计算机视觉、机器学习朝拜者

上节基本完成了SVM的理论推倒,寻找最大化间隔的目标最终转换成求解拉格朗日乘子变量alpha的求解问题,求出了alpha即可求解出SVM的权重W,有了权重也就有了最大间隔距离,但是其实上节我们有个假设:就是训练集是线性可分的,这样求出的alpha在[0,infinite]。但是如果数据不是线性可分的呢?此时我们就要允许部分的样本可以越过分类器,这样优化的目标函数就可以不变,只要引入松弛变量

即可,它表示错分类样本点的代价,分类正确时它等于0,当分类错误时

,其中Tn表示样本的真实标签-1或者1,回顾上节中,我们把支持向量到分类器的距离固定为1,因此两类的支持向量间的距离肯定大于1的,当分类错误时

肯定也大于1,如(图五)所示(这里公式和图标序号都接上一节)。

(图五)

这样有了错分类的代价,我们把上节(公式四)的目标函数上添加上这一项错分类代价,得到如(公式八)的形式:

(公式八)

重复上节的拉格朗日乘子法步骤,得到(公式九):

(公式九)

多了一个Un乘子,当然我们的工作就是继续求解此目标函数,继续重复上节的步骤,求导得到(公式十):

(公式十)

又因为alpha大于0,而且Un大于0,所以0<alpha<C,为了解释的清晰一些,我们把(公式九)的KKT条件也发出来(上节中的第三类优化问题),注意Un是大于等于0:

推导到现在,优化函数的形式基本没变,只是多了一项错分类的价值,但是多了一个条件,0<alpha<C,C是一个常数,它的作用就是在允许有错误分类的情况下,控制最大化间距,,它太大了会导致过拟合,太小了会导致欠拟合。接下来的步骤貌似大家都应该知道了,多了一个C常量的限制条件,然后继续用SMO算法优化求解二次规划,但是我想继续把核函数也一次说了,如果样本线性不可分,引入核函数后,把样本映射到高维空间就可以线性可分,如(图六)所示的线性不可分的样本:

(图六)

在(图六)中,现有的样本是很明显线性不可分,但是加入我们利用现有的样本X之间作些不同的运算,如(图六)右边所示的样子,而让f作为新的样本(或者说新的特征)是不是更好些?现在把X已经投射到高维度上去了,但是f我们不知道,此时核函数就该上场了,以高斯核函数为例,在(图七)中选几个样本点作为基准点,来利用核函数计算f,如(图七)所示:

(图七)

这样就有了f,而核函数此时相当于对样本的X和基准点一个度量,做权重衰减,形成依赖于x的新的特征f,把f放在上面说的SVM中继续求解alpha,然后得出权重就行了,原理很简单吧,为了显得有点学术味道,把核函数也做个样子加入目标函数中去吧,如(公式十一)所示:

(公式十一)

其中K(Xn,Xm)是核函数,和上面目标函数比没有多大的变化,用SMO优化求解就行了,代码如下:

def smoPK(dataMatIn, classLabels, C, toler, maxIter): #full Platt SMOoS = optStruct(mat(dataMatIn),mat(classLabels).transpose(),C,toler)iter = 0entireSet = True; alphaPairsChanged = 0while (iter < maxIter) and ((alphaPairsChanged > 0) or (entireSet)):alphaPairsChanged = 0if entireSet: #go over allfor i in range(oS.m):alphaPairsChanged += innerL(i,oS)print "fullSet, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)iter += 1else:#go over non-bound (railed) alphasnonBoundIs = nonzero((oS.alphas.A > 0) * (oS.alphas.A < C))[0]for i in nonBoundIs:alphaPairsChanged += innerL(i,oS)print "non-bound, iter: %d i:%d, pairs changed %d" % (iter,i,alphaPairsChanged)iter += 1if entireSet: entireSet = False #toggle entire set loopelif (alphaPairsChanged == 0): entireSet = Trueprint "iteration number: %d" % iterreturn oS.b,oS.alphas

下面演示一个小例子,手写识别。

(1)收集数据:提供文本文件

(2)准备数据:基于二值图像构造向量

(3)分析数据:对图像向量进行目测

(4)训练算法:采用两种不同的核函数,并对径向基函数采用不同的设置来运行SMO算法。

(5)测试算法:编写一个函数来测试不同的核函数,并计算错误率

(6)使用算法:一个图像识别的完整应用还需要一些图像处理的只是,此demo略。

志在山顶的人,不会贪念山腰的风景。

计算机视觉、机器学习朝拜者

相关文章:

你感兴趣的文章:

标签云: