【剑指Offer学习】【面试题39:二叉树的深度】

题目一:输入一棵二叉树的根结点,求该树的深度。从根结点到叶子点依次经过的结点(含根、叶结点)形成树的一条路径,最长路径的长度为树的深度。二叉树的结点定义BinaryTreeNode {int val;BinaryTreeNode left;BinaryTreeNode right;public BinaryTreeNode() {}public BinaryTreeNode(int val) {this.val = val;}}解题思路

  如果一棵树只有一个结点,,它的深度为。 如果根结点只有左子树而没有右子树, 那么树的深度应该是其左子树的深度加1,同样如果根结点只有右子树而没有左子树,那么树的深度应该是其右子树的深度加1. 如果既有右子树又有左子树, 那该树的深度就是其左、右子树深度的较大值再加1 . 比如在图6.1 的二叉树中,根结点为1 的树有左右两个子树,其左右子树的根结点分别为结点2和3。根结点为2 的左子树的深度为3 , 而根结点为3 的右子树的深度为2,因此根结点为1的树的深度就是4 。   这个思路用递归的方法很容易实现, 只儒对遍历的代码稍作修改即可。

代码实现public static int treeDepth(BinaryTreeNode root) {if (root == null) {return 0;}int left = treeDepth(root.left);int right = treeDepth(root.right);return left > right ? (left + 1) : (right + 1);}题目二:输入一棵二叉树的根结点,判断该树是不是平衡二叉树。如果某二叉树中任意结点的左右子树的深度相差不超过1 ,那么它就是一棵平衡二叉树。解题思路

解法一:需要重蟹遍历结点多次的解法   在遍历树的每个结点的时候,调用函数treeDepth得到它的左右子树的深度。如果每个结点的左右子树的深度相差都不超过1 ,按照定义它就是一棵平衡的二叉树。

public static boolean isBalanced(BinaryTreeNode root) {if (root == null) {return true;}int left = treeDepth(root.left);int right = treeDepth(root.right);int diff = left – right;if (diff > 1 || diff < -1) {return false;}return isBalanced(root.left) && isBalanced(root.right);}

解法二:每个结点只遍历一次的解法   用后序遍历的方式遍历二叉树的每一个结点,在遍历到一个结点之前我们就已经遍历了它的左右子树。只要在遍历每个结点的时候记录它的深度(某一结点的深度等于它到叶节点的路径的长度),我们就可以一边遍历一边判断每个结点是不是平衡的。

/** * 判断是否是平衡二叉树,第二种解法 * * @param root * @return */(BinaryTreeNode root) {int[] depth = new int[1];return isBalancedHelper(root, depth);}(BinaryTreeNode root, int[] depth) {if (root == null) {depth[0] = 0;return true;}int[] left = new int[1];int[] right = new int[1];if (isBalancedHelper(root.left, left) && isBalancedHelper(root.right, right)) {int diff = left[0] – right[0];if (diff >= -1 && diff <= 1) {depth[0] = 1 + (left[0] > right[0] ? left[0] : right[0]);return true;}}return false;}完整代码{{int val;BinaryTreeNode left;BinaryTreeNode right;public BinaryTreeNode() {}public BinaryTreeNode(int val) {this.val = val;}}(BinaryTreeNode root) {if (root == null) {return 0;}int left = treeDepth(root.left);int right = treeDepth(root.right);return left > right ? (left + 1) : (right + 1);}/*** 判断是否是平衡二叉树,第一种解法** @param root* @return*/(BinaryTreeNode root) {if (root == null) {return true;}int left = treeDepth(root.left);int right = treeDepth(root.right);int diff = left – right;if (diff > 1 || diff < -1) {return false;}return isBalanced(root.left) && isBalanced(root.right);}/*** 判断是否是平衡二叉树,第二种解法** @param root* @return*/(BinaryTreeNode root) {int[] depth = new int[1];return isBalancedHelper(root, depth);}(BinaryTreeNode root, int[] depth) {if (root == null) {depth[0] = 0;return true;}int[] left = new int[1];int[] right = new int[1];if (isBalancedHelper(root.left, left) && isBalancedHelper(root.right, right)) {int diff = left[0] – right[0];if (diff >= -1 && diff <= 1) {depth[0] = 1 + (left[0] > right[0] ? left[0] : right[0]);return true;}}return false;}(String[] args) {test1();test2();test3();test4();}() {BinaryTreeNode n1 = new BinaryTreeNode(1);BinaryTreeNode n2 = new BinaryTreeNode(1);BinaryTreeNode n3 = new BinaryTreeNode(1);BinaryTreeNode n4 = new BinaryTreeNode(1);BinaryTreeNode n5 = new BinaryTreeNode(1);BinaryTreeNode n6 = new BinaryTreeNode(1);BinaryTreeNode n7 = new BinaryTreeNode(1);n1.left = n2;n1.right = n3;n2.left = n4;n2.right = n5;n3.left = n6;n3.right = n7;System.out.println(isBalanced(n1));System.out.println(isBalanced2(n1));System.out.println(“—————-“);}() {BinaryTreeNode n1 = new BinaryTreeNode(1);BinaryTreeNode n2 = new BinaryTreeNode(1);BinaryTreeNode n3 = new BinaryTreeNode(1);BinaryTreeNode n4 = new BinaryTreeNode(1);BinaryTreeNode n5 = new BinaryTreeNode(1);BinaryTreeNode n6 = new BinaryTreeNode(1);BinaryTreeNode n7 = new BinaryTreeNode(1);n1.left = n2;n1.right = n3;n2.left = n4;n2.right = n5;n5.left = n7;n3.right = n6;System.out.println(isBalanced(n1));System.out.println(isBalanced2(n1));System.out.println(“—————-“);}() {BinaryTreeNode n1 = new BinaryTreeNode(1);BinaryTreeNode n2 = new BinaryTreeNode(1);BinaryTreeNode n3 = new BinaryTreeNode(1);BinaryTreeNode n4 = new BinaryTreeNode(1);BinaryTreeNode n5 = new BinaryTreeNode(1);BinaryTreeNode n6 = new BinaryTreeNode(1);BinaryTreeNode n7 = new BinaryTreeNode(1);n1.left = n2;n1.right = n3;n2.left = n4;n2.right = n5;n5.left = n7;System.out.println(isBalanced(n1));System.out.println(isBalanced2(n1));System.out.println(“—————-“);}() {BinaryTreeNode n1 = new BinaryTreeNode(1);BinaryTreeNode n2 = new BinaryTreeNode(1);BinaryTreeNode n3 = new BinaryTreeNode(1);BinaryTreeNode n4 = new BinaryTreeNode(1);BinaryTreeNode n5 = new BinaryTreeNode(1);BinaryTreeNode n6 = new BinaryTreeNode(1);BinaryTreeNode n7 = new BinaryTreeNode(1);n1.left = n2;n2.left = n3;n3.left = n4;n4.left = n5;System.out.println(isBalanced(n1));System.out.println(isBalanced2(n1));System.out.println(“—————-“);}() {BinaryTreeNode n1 = new BinaryTreeNode(1);BinaryTreeNode n2 = new BinaryTreeNode(1);BinaryTreeNode n3 = new BinaryTreeNode(1);BinaryTreeNode n4 = new BinaryTreeNode(1);BinaryTreeNode n5 = new BinaryTreeNode(1);BinaryTreeNode n6 = new BinaryTreeNode(1);BinaryTreeNode n7 = new BinaryTreeNode(1);n1.right = n2;n2.right = n3;n3.right = n4;n4.right = n5;System.out.println(isBalanced(n1));System.out.println(isBalanced2(n1));System.out.println(“—————-“);}}运行结果

鱼儿爱美,不仅需要鳞甲之美。还需要浮沉活泼之美。

【剑指Offer学习】【面试题39:二叉树的深度】

相关文章:

你感兴趣的文章:

标签云: