Linux内核大讲堂之设备驱动的基石驱动模型(1)

可能把驱动模型放在第一章讲会有点难度,但是只要能跨过这道坎,后面就会轻松很多,驱动模型是整个linux设备驱动的基石。大部分人把驱动模型叫做设备模型,但是我查了linux的帮助文档,就是在下载源码路径下的Documentation目录中找到driver-model这个目录,里面包含的文件就是我在本章中所要讲述的东西,也就是我所说的驱动模型。因此本文都会用驱动模型这个术语(如果各位觉得这种叫法是错误的,请在评论中指出,并给出理由,本人非常诚恳的接受各位善意的批评与指正)。驱动模型的核心结构就是我们通常所说的bus、device、device_driver。即总线、设备、设备驱动。首先分析linux内核要有层次的概念,linux从设计上来说是一层套一层的,那么在这一层之下,还有一层由kobject、kobj_type、kset这三者组成,也可以认为其属于驱动模型的范围内,我们可以看到内核对它的描述是:generic kernel object infrastructure。就是通用内核对象基础的意思。我们暂且叫它内核对象层吧。在驱动模型的上层我们可以封装各种子模块子系统,这个以后再做讲解。我们首先来看看内核对象层是什么东西,都有些什么功能。在这个分析的过程中请多一点耐心,在这中间需要的仅仅是耐心而已。首先给出内核对象层各成员的原型:struct kobject {const char*name;struct list_headentry;struct kobject*parent;struct kset*kset;struct kobj_type*ktype;struct sysfs_dirent*sd;struct krefkref;unsigned int state_initialized:1;unsigned int state_in_sysfs:1;unsigned int state_add_uevent_sent:1;unsigned int state_remove_uevent_sent:1;unsigned int uevent_suppress:1;};

struct kset {struct list_head list;spinlock_t list_lock;struct kobject kobj;struct kset_uevent_ops *uevent_ops;};

struct kobj_type {void (*release)(struct kobject *kobj);struct sysfs_ops *sysfs_ops;struct attribute **default_attrs;};首先从各结构体的成员我们发现这没有三角恋的关系,kobject中包含有kobj_type和kset及自身,kset中包含有kobject,而kobj_type则不包含上面两者,只要是在道上混的兄弟,一眼就可以看出kobject在这场恋爱关系中是占据绝对地位的。针对这三者,linux内核提供了一些操作这些成员的方法。(位于kobject.c)。我们挑几个名角讲一讲:void kobject_init(struct kobject *kobj, struct kobj_type *ktype){char *err_str;

if (!kobj) {err_str = "invalid kobject pointer!";goto error;}if (!ktype) {err_str = "must have a ktype to be initialized properly!/n";goto error;}if (kobj->state_initialized) {/* do not error out as sometimes we can recover */printk(KERN_ERR "kobject (%p): tried to init an initialized " "object, something is seriously wrong./n", kobj);dump_stack();}

kobject_init_internal(kobj);kobj->ktype = ktype;return;

error:printk(KERN_ERR "kobject (%p): %s/n", kobj, err_str);dump_stack();}

我们避重就轻的看一下(前面初始化和合法条件判断在实际的运行当中是很重要的,但是对我们分析来说只要能抓主线,分析我们感兴趣的内容就可以了),可以把这个函数简化:void kobject_init(struct kobject *kobj, struct kobj_type *ktype){char *err_str;kobject_init_internal(kobj);kobj->ktype = ktype;return;}OK,我们看见传入了两个参数,一个是kobject的指针kobj,一个是kobj_type的指针ktype,在调用完kobject_init_internal(kobj)之后,就将传入的ktype赋值给了kobject的ktype成员。我们先来看看ktype到底是何方神圣。在分析ktype之前,我们先要往上跑一层,这一层我们选择int device_register(struct device *dev)这个函数,先给出函数原型:int device_register(struct device *dev){device_initialize(dev);return device_add(dev);}void device_initialize(struct device *dev){dev->kobj.kset = devices_kset;kobject_init(&dev->kobj, &device_ktype);INIT_LIST_HEAD(&dev->dma_pools);init_MUTEX(&dev->sem);spin_lock_init(&dev->devres_lock);INIT_LIST_HEAD(&dev->devres_head);device_init_wakeup(dev, 0);device_pm_init(dev);set_dev_node(dev, -1);}我们找到我们感兴趣的kobject_init(&dev->kobj, &device_ktype);我们查看device_ktype的定义:static struct kobj_type device_ktype = {.release= device_release,.sysfs_ops= &dev_sysfs_ops,};很明显release的作用就是release,至于怎么release我们先不看,下面一个就是sysfs_ops。这个sysfs与用户空间通信的一个接口,我们点击进去查看一下:static struct sysfs_ops dev_sysfs_ops = {.show= dev_attr_show,.store= dev_attr_store,};分别对应了我们读和写sysfs下面节点的两个动作。至于里面干嘛的我们先不管。从上面我们知道,ktype包含了一个sysfs的读写接口,另外包含了一个具有release功能的函数。回到我们之前的内容:简化版的kobject_init函数:void kobject_init(struct kobject *kobj, struct kobj_type *ktype){char *err_str;kobject_init_internal(kobj);kobj->ktype = ktype;return;}剩下的就是kobject_init_internal(kobj)了。static void kobject_init_internal(struct kobject *kobj){if (!kobj)return;kref_init(&kobj->kref);INIT_LIST_HEAD(&kobj->entry);kobj->state_in_sysfs = 0;kobj->state_add_uevent_sent = 0;kobj->state_remove_uevent_sent = 0;kobj->state_initialized = 1;}这个函数的功能纯粹就是初始化。从这个初始经我们了解一些更新的东西:kref_init(&kobj->kref);这个叫引用计数,kref_init的作用就是将kobjct->kref设为1。接下来就是初始化kobject->entry这条链表(linux内核的链表是非常重要且比较精妙的,网上相关的好文章也很多,请同志们自行查阅学习)。接下来就是一堆的位域。kobj->state_in_sysfs这个成员正如其名:指明是否使用了sysfs。初始化为0,显然是说:哥现在还没用。kobj->state_add_uevent_sent、kobj->state_remove_uevent_sent 这两个成员的名命也是非常直观的:指明是否有加载或删除事件。这个是和热插拔相关的,当我们增加一个设备或者删除一个设备的时候,会在合适的时候将此位域置为1。kobj->state_initialized指明kobject是否有被初始化,这们是唯一个置1的。显然自身被初始化了。在分析之前有必要说明一下,为了让我们的分析更加简练,我们只会在合适的时候分析结构体的相关成员,不会在没有用到的情况下将成员的作用全都描述出来。int device_add(struct device *dev){struct device *parent = NULL;struct class_interface *class_intf;int error = -EINVAL;

dev = get_device(dev);if (!dev)goto done;

if (!dev->p) {error = device_private_init(dev);if (error)goto done;}

/* * for statically allocated devices, which should all be converted * some day, we need to initialize the name. We prevent reading back * the name, and force the use of dev_name() */if (dev->init_name) {dev_set_name(dev, "%s", dev->init_name);dev->init_name = NULL;}

if (!dev_name(dev))goto name_error;

pr_debug("device: ‘%s’: %s/n", dev_name(dev), __func__);

parent = get_device(dev->parent);setup_parent(dev, parent);

/* use parent numa_node */if (parent)set_dev_node(dev, dev_to_node(parent));

/* first, register with generic layer. *//* we require the name to be set before, and pass NULL */error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);if (error)goto Error;

/* notify platform of device entry */if (platform_notify)platform_notify(dev);

error = device_create_file(dev, &uevent_attr);if (error)goto attrError;

if (MAJOR(dev->devt)) {error = device_create_file(dev, &devt_attr);if (error)goto ueventattrError;

error = device_create_sys_dev_entry(dev);if (error)goto devtattrError;

devtmpfs_create_node(dev);}

error = device_add_class_symlinks(dev);if (error)goto SymlinkError;error = device_add_attrs(dev);if (error)goto AttrsError;error = bus_add_device(dev);if (error)goto BusError;error = dpm_sysfs_add(dev);if (error)goto DPMError;device_pm_add(dev);

/* Notify clients of device addition. This call must come * after dpm_sysf_add() and before kobject_uevent(). */if (dev->bus)blocking_notifier_call_chain(&dev->bus->p->bus_notifier, BUS_NOTIFY_ADD_DEVICE, dev);

kobject_uevent(&dev->kobj, KOBJ_ADD);bus_probe_device(dev);if (parent)klist_add_tail(&dev->p->knode_parent, &parent->p->klist_children);

if (dev->class) {mutex_lock(&dev->class->p->class_mutex);/* tie the class to the device */klist_add_tail(&dev->knode_class, &dev->class->p->class_devices);

/* notify any interfaces that the device is here */list_for_each_entry(class_intf, &dev->class->p->class_interfaces, node)if (class_intf->add_dev)class_intf->add_dev(dev, class_intf);mutex_unlock(&dev->class->p->class_mutex);}done:put_device(dev);return error;DPMError:bus_remove_device(dev);BusError:device_remove_attrs(dev);AttrsError:device_remove_class_symlinks(dev);SymlinkError:if (MAJOR(dev->devt))device_remove_sys_dev_entry(dev);devtattrError:if (MAJOR(dev->devt))device_remove_file(dev, &devt_attr);ueventattrError:device_remove_file(dev, &uevent_attr);attrError:kobject_uevent(&dev->kobj, KOBJ_REMOVE);kobject_del(&dev->kobj);Error:cleanup_device_parent(dev);if (parent)put_device(parent);name_error:kfree(dev->p);dev->p = NULL;goto done;}当你看到这一大段的时候,是不是感觉很郁闷,我也很郁闷,但是哥很高兴的说:依我们目前的功能,我们只分析kobject_add(&dev->kobj, dev->kobj.parent, NULL)就够了。从人生的低谷瞬间又找回自信其实很简单,就在现在。先给出函数定义:int kobject_add(struct kobject *kobj, struct kobject *parent,const char *fmt, …){va_list args;int retval;

if (!kobj)return -EINVAL;

if (!kobj->state_initialized) {printk(KERN_ERR "kobject ‘%s’ (%p): tried to add an " "uninitialized object, something is seriously wrong./n", kobject_name(kobj), kobj);dump_stack();return -EINVAL;}va_start(args, fmt);retval = kobject_add_varg(kobj, parent, fmt, args);va_end(args);

return retval;}这下代码少多了。我们可以看到核心函数是kobject_add_varg(kobj, parent, fmt, args),其定义如下:static int kobject_add_varg(struct kobject *kobj, struct kobject *parent, const char *fmt, va_list vargs){int retval;

retval = kobject_set_name_vargs(kobj, fmt, vargs);if (retval) {printk(KERN_ERR "kobject: can not set name properly!/n");return retval;}kobj->parent = parent;return kobject_add_internal(kobj);}其中的kobject_set_name_vargs就是用于设置kobject的名字。int kobject_set_name_vargs(struct kobject *kobj, const char *fmt, va_list vargs){const char *old_name = kobj->name;char *s;

if (kobj->name && !fmt)return 0;

kobj->name = kvasprintf(GFP_KERNEL, fmt, vargs);if (!kobj->name)return -ENOMEM;

/* ewww… some of these buggers have ‘/’ in the name … */while ((s = strchr(kobj->name, ‘/’)))s[0] = ‘!’;

kfree(old_name);return 0;}下面就是kobject_add_internal这个函数了,其定义如下:static int kobject_add_internal(struct kobject *kobj){int error = 0;struct kobject *parent;

if (!kobj)return -ENOENT;

if (!kobj->name || !kobj->name[0]) {WARN(1, "kobject: (%p): attempted to be registered with empty " "name!/n", kobj);return -EINVAL;}

parent = kobject_get(kobj->parent);

/* join kset if set, use it as parent if we do not already have one */if (kobj->kset) {if (!parent)parent = kobject_get(&kobj->kset->kobj);kobj_kset_join(kobj);kobj->parent = parent;}

pr_debug("kobject: ‘%s’ (%p): %s: parent: ‘%s’, set: ‘%s’/n", kobject_name(kobj), kobj, __func__, parent ? kobject_name(parent) : "<NULL>", kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");

error = create_dir(kobj);if (error) {kobj_kset_leave(kobj);kobject_put(parent);kobj->parent = NULL;

/* be noisy on error issues */if (error == -EEXIST)printk(KERN_ERR "%s failed for %s with " "-EEXIST, don’t try to register things with " "the same name in the same directory./n", __func__, kobject_name(kobj));elseprintk(KERN_ERR "%s failed for %s (%d)/n", __func__, kobject_name(kobj), error);dump_stack();} elsekobj->state_in_sysfs = 1;

return error;}凭着一个程序员的直觉,我们可以看到最重要的是create_dir(kobj);没错,哥猜的很对,就是它了,它和sysfs相关,创建了一个目录,具体这个函数因为牵涉的非常广,我们暂且不做分析。君子报仇,十年不晚,我们看谁笑到最后。在create_dir(kobj)之后我们将kobj->state_in_sysfs =置为1,很亲切吧。撞到老相识的感觉很爽吧,我们在后续分析内核的过程中会撞到越来越多的老相识,并且结识更多的新朋友。连著名歌唱家殷秀梅都知道学习内核的方法:结识新朋友,不忘老朋友……(80后朋友应该都认识,90后的有可能就不认识了)。接下来我们来分析一下和kset有关的一个函数,那就是先给出函数原型:struct kset *kset_create_and_add(const char *name, struct kset_uevent_ops *uevent_ops, struct kobject *parent_kobj){struct kset *kset;int error;

kset = kset_create(name, uevent_ops, parent_kobj);if (!kset)return NULL;error = kset_register(kset);if (error) {kfree(kset);return NULL;}return kset;}和上一节分析kobject一样,为了更好的讲解这个函数我们先要跳到上一层,我们先有必要看一下都有哪些朋友调用了它:int bus_register(struct bus_type *bus)。大名鼎鼎的总线注册。我们看到bus_register函数中有这样几行代码:

priv->devices_kset = kset_create_and_add("devices", NULL, &priv->subsys.kobj);if (!priv->devices_kset) {retval = -ENOMEM;goto bus_devices_fail;}

priv->drivers_kset = kset_create_and_add("drivers", NULL, &priv->subsys.kobj);可见总线包括两组kset,devices和drivers。OK。我们以第一段为基础讲解,分别传入了一个常字符串”devices”,一个空指针,一个kobject指针。函数内部首先调用static struct kset *kset_create(const char *name,struct kset_uevent_ops *uevent_ops,struct kobject *parent_kobj){struct kset *kset;int retval;

kset = kzalloc(sizeof(*kset), GFP_KERNEL); //分配一个kset结构体并初始化if (!kset)return NULL;retval = kobject_set_name(&kset->kobj, name); //将传入的常字符串("devices")赋值给kset->kobj->nameif (retval) {kfree(kset);return NULL;}kset->uevent_ops = uevent_ops; //将uevent_opskset->kobj.parent = parent_kobj; //将父类kobject指针赋值给kset->kobj.parent

/* * The kobject of this kset will have a type of kset_ktype and belong to * no kset itself. That way we can properly free it when it is * finished being used. */kset->kobj.ktype = &kset_ktype; //将kset_ktyp赋值给kset->kobj.ktypekset->kobj.kset = NULL; //将NULL赋值给kset->kobj.kset

return kset;}从上面的注释我们发现kset内嵌的kobject的重要性了。这是kset和kobject的重要关系。有一句话来形容叫我中有你,你中有我。接下来我们将创建好的kset以指针的形式传给kset_register.int kset_register(struct kset *k){int err;

if (!k)return -EINVAL;

kset_init(k);err = kobject_add_internal(&k->kobj);if (err)return err;kobject_uevent(&k->kobj, KOBJ_ADD);return 0;}

void kset_init(struct kset *k){kobject_init_internal(&k->kobj);INIT_LIST_HEAD(&k->list);spin_lock_init(&k->list_lock);}接下来就是kobject_add_internal(&k->kobj),又撞到老相识了,让我们再次高歌:结识新朋友,不忘老朋友…好了,kobject,kobj_type,kset的关系我们大概清楚了,下面是我画的一个图用于表示这三者的关系:

好了,先抽根烟吧,下节我们继续分析。

生活若剥去了理想、梦想、幻想,那生命便只是一堆空架子

Linux内核大讲堂之设备驱动的基石驱动模型(1)

相关文章:

你感兴趣的文章:

标签云: