电感的作用

    共模信号—-磁场加强——-抑制共模信号变化
    差模信号—–磁场抵消—–对差模信号变化影响小
    电感滤波电路
    常见的有如下的π型LC滤波电路,L1为滤波电感,C1和C2 为滤波,因为C1、L1、和C2构成了一个π型字样,所以称为π型滤波电路。

    从整流电路输出的交流和直流混合电流首先经过C1滤波,然后加到L1和C2组成滤波电路中。
    对于直流电流而言,由于L1的直流电阻很小,所以直流电流流过L1时在L1上产生的直流电压降很小,这样直流电压就能通过L1到达输出端。
    对于交流电流而言,因为L1存在感抗,而且滤波电路中L1的电感量比较大,所以感抗很大。这一感抗与C2的容抗(滤波电容的容量大,容抗小)构成分压衰减电路,等效电路如下所示: 

    这个衰减电路中,对交流电压有很大衰减作用,达到去掉交流电压的目的。
    磁珠
    磁珠是一种抗干扰元件,其主要原料为铁氧体,具有很高的导磁率,滤除高频噪声效果显著。当磁珠中有电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大的衰减。磁珠把交流信号转化为热能。
    磁珠对高频信号才有较大阻碍作用,一般规格有100欧/100mMHZ,它在低频时电阻比电感小得多。电感的等效电阻可有Z=2X3.14*f来求得。铁氧体磁珠(Ferrite Bead)是目前应用发展很快的一种抗干扰元件,廉价、易用,滤除高频噪声效果显著。
    铁氧体磁珠 (Ferrite Bead) 是目前应用发展很快的一种抗干扰元件,廉价、易用,滤除高频噪声效果显著。在电路中只要导线穿过它即当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个元件的值都与磁珠的长度成比例 。
    在电路中只要导线穿过它即可(我用的都是象普通电阻模样的,导线已穿过并胶合,也有表面贴装的形式,但很少见到卖的)。当导线中电流穿过时,铁氧体对低频电流几乎没有什么阻抗,而对较高频率的电流会产生较大衰减作用。高频电流在其中以热量形式散发,其等效电路为一个电感和一个电阻串联,两个元件的值都与磁珠的长度成比例。磁珠种类很多,制造商应提供技术指标说明,特别是磁珠的阻抗与频率关系的曲线。
    磁珠命名与参数
    磁珠的大小(确切的说应该是磁珠的特性曲线)取决于需要磁珠吸收的干扰波的频率。磁珠对直流电阻低,对高频电阻高。磁珠的单位是按照它在某一频率产生的阻抗来标称的,因此单位也是欧姆。磁珠的文档上一般会有频率和阻抗的特性曲线图。一般以100MHz为标准,比如2012B601,就是指在100MHz的时候磁珠的阻抗为600欧姆。参数主要有三项:阻抗[Z]@100MHz(ohm);直流电阻DC阻抗(mohm);额定电流(mA).
    常用于滤波的HH-1H3216-500为例,其型号各字段含义依次为:HH 是其一个系列,主要用于电源滤波,用于信号线是HB系列;1 表示一个元件封装了一个磁珠,若为4则是并排封装四个的;H 表示组成物质,H、C、M为中频应用(50-200MHz),T低频应用(<50MHz),S高频应用(>200MHz);3216 封装尺寸,长3.2mm,宽1.6mm,即1206封装;500 阻抗(一般为100MHz时),
    磁珠阻抗特性
    磁珠有很高的电阻率和磁导率, 等效于电阻和电感串联, 但电阻值和电感值都随频率变化。感阻抗在形式上是随着频率的升高而增加。 低频段,阻抗由电感的感抗构成。电阻R很小。磁芯的磁导率较高,因此电感量较大,L起主要作用,电磁干扰被反射而受到抑制,并且这时磁芯的损耗较小.整个器件是一个低损耗,高Q特性的电感。这种电感容易造成谐振.因此在低频段有时可能出现使用铁氧体磁珠后.干扰增强的现象。
    高频段,阻抗由电阻成分构成,随着频率升高,磁芯的磁导率降低,导致电感的电感量减小,感抗成分减小。这时磁芯的损耗增加,电阻成分增加,导致总的阻抗增加。当高频信号通过铁氧体时,电磁干扰被吸收并转换成热能的形式耗散掉。

电感的作用

相关文章:

你感兴趣的文章:

标签云: