idaretobe的专栏

引言

将 Java 对象序列化为二进制文件的 Java 序列化技术是 Java 系列技术中一个较为重要的技术点,在大部分情况下,开发人员只需要了解被序列化的类需要实现 Serializable 接口,使用 ObjectInputStream 和 ObjectOutputStream 进行对象的读写。然而在有些情况下,光知道这些还远远不够,文章列举了笔者遇到的一些真实情境,它们与 Java 序列化相关,通过分析情境出现的原因,使读者轻松牢记 Java 序列化中的一些高级认识。

文章结构

本文将逐一的介绍几个情境,顺序如下面的列表。

序列化 ID 的问题静态变量序列化父类的序列化与 Transient 关键字对敏感字段加密序列化存储规则

列表的每一部分讲述了一个单独的情境,读者可以分别查看。

序列化 ID 问题

情境:两个客户端 A 和 B 试图通过网络传递对象数据,A 端将对象 C 序列化为二进制数据再传给 B,B 反序列化得到 C。

问题:C 对象的全类路径假设为 com.inout.Test,在 A 和 B 端都有这么一个类文件,功能代码完全一致。也都实现了 Serializable 接口,但是反序列化时总是提示不成功。

解决:虚拟机是否允许反序列化,不仅取决于类路径和功能代码是否一致,一个非常重要的一点是两个类的序列化 ID 是否一致(就是 private static final long serialVersionUID = 1L)。清单 1 中,虽然两个类的功能代码完全一致,但是序列化 ID 不同,他们无法相互序列化和反序列化。

清单 1. 相同功能代码不同序列化 ID 的类对比

package com.inout; import java.io.Serializable; public class A implements Serializable {private static final long serialVersionUID = 1L;private String name;public String getName() {return name; }public void setName(String name) {this.name = name; } } package com.inout; import java.io.Serializable; public class A implements Serializable {private static final long serialVersionUID = 2L;private String name;public String getName() {return name; }public void setName(String name) {this.name = name; } }

序列化 ID 在 Eclipse 下提供了两种生成策略,一个是固定的 1L,一个是随机生成一个不重复的 long 类型数据(实际上是使用 JDK 工具生成),在这里有一个建议,如果没有特殊需求,就是用默认的 1L 就可以,这样可以确保代码一致时反序列化成功。那么随机生成的序列化 ID 有什么作用呢,有些时候,通过改变序列化 ID 可以用来限制某些用户的使用。

特性使用案例

读者应该听过 Faade 模式,它是为应用程序提供统一的访问接口,案例程序中的 Client 客户端使用了该模式,案例程序结构图如图 1 所示。

图 1. 案例程序结构

Client 端通过 Faade Object 才可以与业务逻辑对象进行交互。而客户端的 Faade Object 不能直接由 Client 生成,而是需要 Server 端生成,然后序列化后通过网络将二进制对象数据传给 Client,Client 负责反序列化得到 Faade 对象。该模式可以使得 Client 端程序的使用需要服务器端的许可,同时 Client 端和服务器端的 Faade Object 类需要保持一致。当服务器端想要进行版本更新时,只要将服务器端的 Faade Object 类的序列化 ID 再次生成,当 Client 端反序列化 Faade Object 就会失败,也就是强制 Client 端从服务器端获取最新程序。

静态变量序列化

情境:查看清单 2 的代码。

清单 2. 静态变量序列化问题代码

public class Test implements Serializable {private static final long serialVersionUID = 1L;public static int staticVar = 5;public static void main(String[] args) {try {//初始时staticVar为5ObjectOutputStream out = new ObjectOutputStream(new FileOutputStream("result.obj"));out.writeObject(new Test());out.close();//序列化后修改为10Test.staticVar = 10;ObjectInputStream oin = new ObjectInputStream(new FileInputStream("result.obj"));Test t = (Test) oin.readObject();oin.close();//再读取,通过t.staticVar打印新的值System.out.println(t.staticVar);} catch (FileNotFoundException e) {e.printStackTrace();} catch (IOException e) {e.printStackTrace();} catch (ClassNotFoundException e) {e.printStackTrace();}}}

清单 2 中的 main 方法,将对象序列化后,修改静态变量的数值,再将序列化对象读取出来,然后通过读取出来的对象获得静态变量的数值并打印出来。依照清单 2,这个 System.out.println(t.staticVar) 语句输出的是 10 还是 5 呢?

最后的输出是 10,对于无法理解的读者认为,打印的 staticVar 是从读取的对象里获得的,应该是保存时的状态才对。之所以打印 10 的原因在于序列化时,并不保存静态变量,这其实比较容易理解,序列化保存的是对象的状态,静态变量属于类的状态,因此序列化并不保存静态变量。

父类的序列化与 Transient 关键字

情境:一个子类实现了 Serializable 接口,它的父类都没有实现 Serializable 接口,序列化该子类对象,然后反序列化后输出父类定义的某变量的数值,该变量数值与序列化时的数值不同。

解决:要想将父类对象也序列化,就需要让父类也实现Serializable 接口。如果父类不实现的话的,就需要有默认的无参的构造函数。在父类没有实现 Serializable 接口时,虚拟机是不会序列化父对象的,而一个 Java 对象的构造必须先有父对象,才有子对象,反序列化也不例外。所以反序列化时,为了构造父对象,只能调用父类的无参构造函数作为默认的父对象。因此当我们取父对象的变量值时,它的值是调用父类无参构造函数后的值。如果你考虑到这种序列化的情况,在父类无参构造函数中对变量进行初始化,否则的话,父类变量值都是默认声明的值,如 int 型的默认是 0,string 型的默认是 null。

真正的寂寞是在人群中,当你面对许多熟悉的脸,

idaretobe的专栏

相关文章:

你感兴趣的文章:

标签云: