《机器学习》学习笔记(二):神经网络

在解决一些简单的分类问题时,线性回归与逻辑回归就足以应付,但面对更加复杂的问题时(例如对图片中车的类型进行识别),运用之前的线性模型可能就得不到理想的结果,而且由于更大的数据量,之前方法的计算量也会变得异常庞大。因此我们需要学习一个非线性系统:神经网络。

我在学习时,主要通过Andrew Ng教授提供的网络,而且文中多处都有借鉴Andrew Ng教授在mooc提供的资料。

转载请注明出处:

神经网络在解决一些复杂的非线性分类问题时,相对于线性回归、逻辑回归,都被证明是一个更好的算法。其实神经网络也可以看做的逻辑回归的组合(叠加,级联等)。

一个典型神经网络的模型如下图所示:

上述模型由3个部分组成:输入层、隐藏层、输出层。其中输入层输入特征值,输出层的输出作为我们分类的依据。例如一个20*20大小的手写数字图片的识别举例,那么输入层的输入便可以是20*20=400个像素点的像素值,即模型中的a1;输出层的输出便可以看做是该幅图片是0到9其中某个数字的概率。而隐藏层、输出层中的每个节点其实都可以看做是逻辑回归得到的。逻辑回归的模型可以看做这样(如下图所示):

有了神经网络的模型,我们的目的就是求解模型里边的参数theta,为此我们还需知道该模型的代价函数以及每一个节点的“梯度值”。

代价函数的定义如下:

代价函数关于每一个节点处theta的梯度可以用反向传播算法计算出来。反向传播算法的思想是由于我们无法直观的得到隐藏层的输出,但我们已知输出层的输出,通过反向传播,倒退其参数。

我们以以下模型举例,来说明反向传播的思路、过程:

该模型与给出的第一个模型不同的是,它具有两个隐藏层。

为了熟悉这个模型,我们需要先了解前向传播的过程,对于此模型,前向传播的过程如下:

其中,,a1,z2等参数的意义可以参照本文给出的第一个神经网络模型,类比得出。

然后我们定义误差delta符号具有如下含义(之后推导梯度要用):

我们可以沿途用镜头记录彼此的笑脸,和属于我们的风景。

《机器学习》学习笔记(二):神经网络

相关文章:

你感兴趣的文章:

标签云: