一个简单的时间片轮转多道程序内核操作系统工作流程

一.操作系统工作概述

存储程序计算机工作模型,计算机系统最最基础性的逻辑结构;

函数调用堆栈,高级语言得以运行的基础;

中断,多道程序操作系统的基点。

二.代码分析

在上一篇博文《搭建OS kernel环境方法》的基础上进行时间片轮转多道程序的小os.

主要对mypcb.h, mymain.c 和myinterrupt.c这三个文件进行分析。

<pre name="code" class="cpp"><span style="font-size:12px;">//mypcb.h</span><span style="font-size:12px;">#define MAX_TASK_NUM4#define KERNEL_STACK_SIZE 1024*8/* CPU-specific state of this task */struct Thread {//给任务定义一个eip和espunsigned longip;unsigned longsp;};typedef struct PCB{int pid;//任务编号volatile long state;/* -1 unrunnable, 0 runnable, >0 stopped */char stack[KERNEL_STACK_SIZE];//定义栈空间/* CPU-specific state of this task */struct Thread thread;//定义进程的结构体thread, 其中有eip和espunsigned longtask_entry;//任务的函数起始处, 也就是任务第一次执行的起始位置struct PCB *next;//一个任务链表, 指向下一个任务}tPCB;</span>

//mymain.c#include <linux/types.h>#include <linux/string.h>#include <linux/ctype.h>#include <linux/tty.h>#include <linux/vmalloc.h>#include "mypcb.h" //引入其中两个结构体表示tPCB task[MAX_TASK_NUM];//定义两个数组tPCB * my_current_task = NULL;volatile int my_need_sched = 0;//定义是否调度, 1则调度, 0则不调度void my_process(void);void __init my_start_kernel(void) //起始函数位置{int pid = 0;int i;<strong>/* Initialize process 0*/</strong>task[pid].pid = pid;task[pid].state = 0;/* -1 unrunnable, 0 runnable, >0 stopped */task[pid].task_entry = task[pid].thread.ip = (unsigned long)my_process;task[pid].thread.sp = (unsigned long)&task[pid].stack[KERNEL_STACK_SIZE-1]; <strong>//0号进程栈在最开始的位置</strong>task[pid].next = &task[pid];<strong> /*fork more process */</strong>for(i=1;i<MAX_TASK_NUM;i++){memcpy(&task[i],&task[0],sizeof(tPCB));//复制0号进程的结构形式task[i].pid = i;task[i].state = -1;//初始的任务(除0号进程外)都设置成未运行task[i].thread.sp = (unsigned long)&task[i].stack[KERNEL_STACK_SIZE-1];task[i].next = task[i-1].next;<strong>//新fork的进程加到进程链表的尾部, 该新建任务的next指向上一个任务的next,也就是自己(最后一个)</strong>task[i-1].next = &task[i]; <strong>//配置上一个任务的next指向这时候新创建的任务</strong>}/* start process 0 by task[0] */pid = 0;my_current_task = &task[pid];//先让0号进程先执行 <strong> asm volatile("movl %1,%%esp\n\t" /* set task[pid].thread.sp to esp */"pushl %1\n\t"/* push ebp ,当前esp=ebp*/"pushl %0\n\t"/* push task[pid].thread.ip */"ret\n\t"/* pop task[pid].thread.ip to eip */"popl %%ebp\n\t":: "c" (task[pid].thread.ip),"d" (task[pid].thread.sp)/* input c or d mean %ecx/%edx*/);</strong>} void my_process(void){int i = 0;while(1){i++;if(i%10000000 == 0){printk(KERN_NOTICE "this is process %d -\n",my_current_task->pid);if(my_need_sched == 1)//判断是否调度;该值可有itnerrupt.c中的函数来配置{my_need_sched = 0;my_schedule(); //主动调动的机制}printk(KERN_NOTICE "this is process %d +\n",my_current_task->pid);}}}//myinterrupt.c#include <linux/types.h>#include <linux/string.h>#include <linux/ctype.h>#include <linux/tty.h>#include <linux/vmalloc.h>#include "mypcb.h"extern tPCB task[MAX_TASK_NUM];extern tPCB * my_current_task;extern volatile int my_need_sched;volatile int time_count = 0;/* * Called by timer interrupt. * it runs in the name of current running process, * so it use kernel stack of current running process */void my_timer_handler(void){#if 1if(time_count%1000 == 0 && my_need_sched != 1)//时钟中断1000次的时候,,调度一次, 配置调度值为1{printk(KERN_NOTICE ">>>my_timer_handler here<<<\n");my_need_sched = 1;}time_count ++ ; #endifreturn; }void my_schedule(void)//<span style="color:#ff0000;">调度函数, 核心函数</span>{tPCB * next;//定义两个指针tPCB * prev;if(my_current_task == NULL //当前进程和下一进程为空, 即没有任务, 返回|| my_current_task->next == NULL){return;}printk(KERN_NOTICE ">>>my_schedule<<<\n");<strong><span style="color:#ff0000;">/* 在调度函数中, next指向的是下一个将要被调度的任务, prev指向的是当前正在运行的任务*/</span></strong>/* schedule */next = my_current_task->next;//把当前进程的下一个进程赋值给next,当前进程赋值给prevprev = my_current_task;if(next->state == 0)/* -1 unrunnable, 0 runnable, >0 stopped */{ //<strong>如果下一个任务不是第一次被调度, 则执行,下一个进程<span style="color:#ff0000;">有进程上下文</span></strong>/* switch to next process */<span style="color:#ff0000;">asm volatile("pushl %%ebp\n\t"/* save 当前进程 ebp */"movl %%esp,%0\n\t"/* save 当前 esp 赋值到prev.thread.sp */"movl %2,%%esp\n\t"/* restore 下一个进程的sp到 esp */"movl $1f,%1\n\t"/*<strong> save 当前进程的 eip =[ 1:]处地址,即下一次从[ 1:]处开始继续执行</strong> *//* 启动下一个进程*/"pushl %3\n\t"/*保存下一个进程eip保存到栈里面*/"ret\n\t"/* restore eip */"1:\t"/* next process start here */"popl %%ebp\n\t": "=m" (prev->thread.sp),"=m" (prev->thread.ip): "m" (next->thread.sp),"m" (next->thread.ip)); </span>my_current_task = next;printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);}else{ <strong> //下一个进程为第一次运行时,<span style="color:#ff0000;">没有进程上下文</span>, 则以下面这种方式来处理</strong>next->state = 0;my_current_task = next;printk(KERN_NOTICE ">>>switch %d to %d<<<\n",prev->pid,next->pid);/* switch to new process */<span style="color:#ff0000;">asm volatile("pushl %%ebp\n\t"/* save ebp */"movl %%esp,%0\n\t"/* save esp */x`"movl %2,%%esp\n\t"/* restore esp */"movl %2,%%ebp\n\t"/* restore ebp */"movl $1f,%1\n\t"/*<strong> save 当前进程的 eip =[ 1:]处地址,即下一次从[ 1:]处开始继续执行</strong> *//* 启动下一个进程*/"pushl %3\n\t""ret\n\t"/* restore eip */: "=m" (prev->thread.sp),"=m" (prev->thread.ip): "m" (next->thread.sp),"m" (next->thread.ip));</span>}return;}

借用另一篇博文,以新任务切换为例进行堆栈变化分析:

author: 于凯

参考课程:《Linux内核分析》MOOC课程

每年的同一天和他庆祝生日,每年的情人节、圣诞节、除夕,

一个简单的时间片轮转多道程序内核操作系统工作流程

相关文章:

你感兴趣的文章:

标签云: