给小白图示讲解OFDM的原理

注:本文首发在QQ空间(因为需要同行的熟人们指正)。因QQ的封闭性,这里重贴一次。本文地址:

  说明:以下文字,灰色为吹水文,黑色为正文,蓝色为采用实际应用中的参数所作的说明。

  起因是这样的。时间回到07年底,4G方兴之时,同桌隔壁的隔壁"小白"同学说看不太明白OFDMA的原理,让我讲解一下。我一向对自己的技术水平、逻辑思考能力和表达技巧还是蛮有自信的,因此轻笑一声就答应了。半小时后,在尝试了从时域、频域以及物理意义等各方面讲解,但均无法从“小白”的眼神中抹除那份迷茫之后,我竖起了白旗,让“小白”自生自灭去了。

  对知识能力的掌握,我自己粗旷的分为两层:一层是“会了,能应用”;二层是“懂了,能衍生”。而能讲解出来,并让人懂,大抵就是区分一层和二层的分水岭。打一个屌丝男喜闻乐见的比方:第一层就是人界的修炼,即使是“会了”,也是有筑基、金丹、元婴等境界之分的,而高考研考就是天劫,不到大乘之境,终究要化为劫灰;第二层是天界,也自有天仙、金仙之分,而能修至道祖的大牛,终究只是寥寥。我一向觉得自己在专业上还算是个“小仙”,可惜就被“小白”打脸了。

  这事儿对我的负面影响挺大的,一是怀疑自己技术宅做久了,表达能力方面严重退化【比如我偶尔会在搜索一个精准的动词或者形容词时,需要尝试2-3次,甚至更多】;二是在涉及到OFDM方面的内容时,仿佛就会看到一张白纸上逡巡着一只挥之不去的黑苍蝇。

  时隔多年,近期又回顾了一下OFDM,不经意又记起这桩公案,犹豫再三,还是决定花时间写下这篇文章,把这只盘旋于脑中的“黑苍蝇”拍死。因此虽然现在网络资源极大丰富,各种文章都可以搜到,其实我是没必要专门写这篇未必比别人写得好的文章的。不过毕竟是自己遗留的缺失,需要自己来补上。  下面试图以图示为主讲解OFDM,以"易懂"为第一要义。"小白",你准备好了吗?

  注:下面的讨论如果不做说明,均假设为理想信道。

章节一:时域上的OFDM

  OFDM的"O"代表着"正交",那么就先说说正交吧。

  首先说说最简单的情况,sin(t)和sin(2t)是正交的【证明:sin(t)·sin(2t)在区间[0,2π]上的积分为0】,而正弦函数又是波的最直观描述,因此我们就以此作为介入点。既然本文说的是图示,那么我们就用图形的方式来先理解一下正交性。【你如果能从向量空间的角度,高屋建瓴的看待这个问题的话,你也就不是"小白"了,R U?】

  在下面的图示中,在[0,2π]的时长内,采用最易懂的幅度调制方式传送信号:sin(t)传送信号a,因此发送a·sin(t),sin(2t)传送信号b,因此发送b·sin(2t)。其中,sin(t)和sin(2t)的用处是用来承载信号,是收发端预先规定好的信息,在本文中一律称为子载波;调制在子载波上的幅度信号a和b,才是需要发送的信息。因此在信道中传送的信号为a·sin(t)+b·sin(2t)。在接收端,分别对接收到的信号作关于sin(t)和sin(2t)的积分检测,就可以得到a和b了。(以下图形采用google绘制)

图一:发送a信号的sin(t)

图二:发送b信号的sin(2t)【注意:在区间[0,2π]内发送了两个完整波形】

图三:发送在无线空间的叠加信号a·sin(t)+b·sin(2t)

图四:接收信号乘sin(t),积分解码出a信号。【如前文所述,传送b信号的sin(2t)项,在积分后为0】

图五:接收信号乘sin(2t),积分解码出b信号。【如前文所述,传送a信号的sin(t)项,在积分后为0】

图六:流程图

  到了这里,也许你会出现两种状态:

  一种是:啊,原来是这样,我懂了。

  一种是:啊,怎么会这样,我完全无法想象。这里要说的是,你根本用不着去想象(visualize)。数学中是如此定义正交的,数学证明了它们的正交性,那么他们就是正交的,【他们就可以互不干扰的承载各自的信息】。选取sin(t)和sin(2t)作为例子,正式因为它们是介于直观和抽象的过渡地带,趟过去吧。

  上面的图示虽然简单,但是却是所有复杂的基础。

  1.1 下一步,将sin(t)和sin(2t)扩展到更多的子载波序列{sin(2π·Δf·t),sin(2π·Δf·2t),sin(2π·Δf·3t),…,sin(2π·Δf·kt)} (例如k=16,256,1024等),应该是很好理解的事情。其中,2π是常量;Δf是事先选好的载频间隔,也是常量。1t,2t,3t,…,kt保证了正弦波序列的正交性。

人生才会更有意义。如果没有梦想,那就托做庸人。

给小白图示讲解OFDM的原理

相关文章:

你感兴趣的文章:

标签云: