压缩感知重构算法之正交匹配追踪(OMP)

题目:压缩感知重构算法之正交匹配追踪(OMP)

前面经过几篇的基础铺垫,本篇给出正交匹配追踪(OMP)算法的MATLAB函数代码,并且给出单次测试例程代码、测量数M与重构成功概率关系曲线绘制例程代码、信号稀疏度K与重构成功概率关系曲线绘制例程代码。

0、符号说明如下:

压缩观测y=Φx,其中y为观测所得向量M×1,x为原信号N×1(M<<N)。x一般不是稀疏的,但在某个变换域Ψ是稀疏的,即x=Ψθ,其中θ为K稀疏的,即θ只有K个非零项。此时y=ΦΨθ,令A=ΦΨ,则y=Aθ。

(1) y为观测所得向量,大小为M×1

(2)x为原信号,大小为N×1

(3)θ为K稀疏的,是信号在x在某变换域的稀疏表示

(4)Φ称为观测矩阵、测量矩阵、测量基,大小为M×N

(5)Ψ称为变换矩阵、变换基、稀疏矩阵、稀疏基、正交基字典矩阵,大小为N×N

(6)A称为测度矩阵、传感矩阵、CS信息算子,大小为M×N

上式中,一般有K<<M<<N,后面三个矩阵各个文献的叫法不一,以后我将Φ称为测量矩阵、将Ψ称为稀疏矩阵、将A称为传感矩阵。

1、OMP重构算法流程:

2、正交匹配追踪(OMP)MATLAB代码(CS_OMP.m)

function [ theta ] = CS_OMP( y,A,t )%CS_OMP Summary of this function goes here%Version: 1.0 written by jbb0523 @2015-04-18% Detailed explanation goes here% y = Phi * x% x = Psi * theta%y = Phi*Psi * theta% 令 A = Phi*Psi, 则y=A*theta% 现在已知y和A,求theta[y_rows,y_columns] = size(y);if y_rows<y_columnsy = y';%y should be a column vectorend[M,N] = size(A);%传感矩阵A为M*N矩阵theta = zeros(N,1);%用来存储恢复的theta(列向量)At = zeros(M,t);%用来迭代过程中存储A被选择的列Pos_theta = zeros(1,t);%用来迭代过程中存储A被选择的列序号r_n = y;%初始化残差(residual)为yfor ii=1:t%迭代t次,t为输入参数product = A'*r_n;%传感矩阵A各列与残差的内积[val,pos] = max(abs(product));%找到最大内积绝对值,即与残差最相关的列At(:,ii) = A(:,pos);%存储这一列Pos_theta(ii) = pos;%存储这一列的序号A(:,pos) = zeros(M,1);%清零A的这一列,其实此行可以不要,因为它与残差正交%y=At(:,1:ii)*theta,以下求theta的最小二乘解(Least Square)theta_ls = (At(:,1:ii)'*At(:,1:ii))^(-1)*At(:,1:ii)'*y;%最小二乘解%At(:,1:ii)*theta_ls是y在At(:,1:ii)列空间上的正交投影r_n = y – At(:,1:ii)*theta_ls;%更新残差endtheta(Pos_theta)=theta_ls;%恢复出的thetaend

3、OMP单次重构测试代码(CS_Reconstuction_Test.m)

代码中,直接构造一个K稀疏的信号,所以稀疏矩阵为单位阵。

%压缩感知重构算法测试clear all;close all;clc;M = 64;%观测值个数N = 256;%信号x的长度K = 10;%信号x的稀疏度Index_K = randperm(N);x = zeros(N,1);x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*thetaPhi = randn(M,N);%测量矩阵为高斯矩阵A = Phi * Psi;%传感矩阵y = Phi * x;%得到观测向量y%% 恢复重构信号xtictheta = CS_OMP(y,A,K);x_r = Psi * theta;% x=Psi * thetatoc%% 绘图figure;plot(x_r,'k.-');%绘出x的恢复信号hold on;plot(x,'r');%绘出原信号xhold off;legend('Recovery','Original')fprintf('\n恢复残差:');norm(x_r-x)%恢复残差

运行结果如下:(信号为随机生成,所以每次结果均不一样)

1)图:

2)Command Windows

Elapsed time is 0.849710 seconds.恢复残差:ans = 5.5020e-015

4、测量数M与重构成功概率关系曲线绘制例程代码

%压缩感知重构算法测试CS_Reconstuction_MtoPercentage.m% 绘制参考文献中的Fig.1% 参考文献:Joel A. Tropp and Anna C. Gilbert % Signal Recovery From Random Measurements Via Orthogonal Matching% Pursuit,IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 53, NO. 12,% DECEMBER 2007.% Elapsed time is 1171.606254 seconds.(@20150418night)clear all;close all;clc;%% 参数配置初始化CNT = 1000;%对于每组(K,M,N),重复迭代次数N = 256;%信号x的长度Psi = eye(N);%x本身是稀疏的,定义稀疏矩阵为单位阵x=Psi*thetaK_set = [4,12,20,28,36];%信号x的稀疏度集合Percentage = zeros(length(K_set),N);%存储恢复成功概率%% 主循环,遍历每组(K,M,N)ticfor kk = 1:length(K_set)K = K_set(kk);%本次稀疏度M_set = K:5:N;%M没必要全部遍历,每隔5测试一个就可以了PercentageK = zeros(1,length(M_set));%存储此稀疏度K下不同M的恢复成功概率for mm = 1:length(M_set)M = M_set(mm);%本次观测值个数P = 0;for cnt = 1:CNT %每个观测值个数均运行CNT次Index_K = randperm(N);x = zeros(N,1);x(Index_K(1:K)) = 5*randn(K,1);%x为K稀疏的,且位置是随机的Phi = randn(M,N);%测量矩阵为高斯矩阵A = Phi * Psi;%传感矩阵y = Phi * x;%得到观测向量ytheta = CS_OMP(y,A,K);%恢复重构信号thetax_r = Psi * theta;% x=Psi * thetaif norm(x_r-x)<1e-6%如果残差小于1e-6则认为恢复成功P = P + 1;endendPercentageK(mm) = P/CNT*100;%计算恢复概率endPercentage(kk,1:length(M_set)) = PercentageK;endtocsave MtoPercentage1000 %运行一次不容易,,把变量全部存储下来%% 绘图S = ['-ks';'-ko';'-kd';'-kv';'-k*'];figure;for kk = 1:length(K_set)K = K_set(kk);M_set = K:5:N;L_Mset = length(M_set);plot(M_set,Percentage(kk,1:L_Mset),S(kk,:));%绘出x的恢复信号hold on;endhold off;xlim([0 256]);legend('K=4','K=12','K=20','K=28','K=36');xlabel('Number of measurements(M)');ylabel('Percentage recovered');title('Percentage of input signals recovered correctly(N=256)(Gaussian)');放弃等于又一次可以选择的机会。

压缩感知重构算法之正交匹配追踪(OMP)

相关文章:

你感兴趣的文章:

标签云: