LINUX设备驱动之设备模型一

我们可以把一个kobject添加到文件系统中去(实际上是添加到其父节点所代表的kset中去),内核提供kobject_create_and_add()接口函数:

struct kobject *kobject_create_and_add(const char *name, struct kobject *parent)

{

struct kobject *kobj;

int retval;

kobj = kobject_create();

if (!kobj)

return NULL;

retval = kobject_add(kobj, parent, "%s", name);

if (retval) {

printk(KERN_WARNING "%s: kobject_add error: %d\n",

__func__, retval);

kobject_put(kobj);

kobj = NULL;

}

return kobj;

}

kobject _create()为要创建的kobject分配内存空间并对其初始化。

struct kobject *kobject_create(void)

{

struct kobject *kobj;

kobj = kzalloc(sizeof(*kobj), GFP_KERNEL);

if (!kobj)

return NULL;

kobject_init(kobj, &dynamic_kobj_ktype);

return kobj;

}

kobject_init()对kobject基本字段进行初始化,用输入参数设置kobj_type属性。

这里粘出代码以供参考:

void kobject_init(struct kobject *kobj, struct kobj_type *ktype)

{

char *err_str;

if (!kobj) {

err_str = "invalid kobject pointer!";

goto error;

}

if (!ktype) {

err_str = "must have a ktype to be initialized properly!\n";

goto error;

}

if (kobj->state_initialized) {

/* do not error out as sometimes we can recover */

printk(KERN_ERR "kobject (%p): tried to init an initialized "

"object, something is seriously wrong.\n", kobj);

dump_stack();

}

kobject_init_internal(kobj);

kobj->ktype = ktype;

return;

error:

printk(KERN_ERR "kobject (%p): %s\n", kobj, err_str);

dump_stack();

}

static void kobject_init_internal(struct kobject *kobj)

{

if (!kobj)

return;

kref_init(&kobj->kref);

INIT_LIST_HEAD(&kobj->entry);

kobj->state_in_sysfs = 0;

kobj->state_add_uevent_sent = 0;

kobj->state_remove_uevent_sent = 0;

kobj->state_initialized = 1;

}

接着看kobject_add()函数:

int kobject_add(struct kobject *kobj, struct kobject *parent,

const char *fmt, …)

{

va_list args;

int retval;

if (!kobj)

return -EINVAL;

if (!kobj->state_initialized) {

printk(KERN_ERR "kobject ‘%s’ (%p): tried to add an "

"uninitialized object, something is seriously wrong.\n",

kobject_name(kobj), kobj);

dump_stack();

return -EINVAL;

}

va_start(args, fmt);

retval = kobject_add_varg(kobj, parent, fmt, args);

va_end(args);

return retval;

}

在上面的初始化中已把位变量设位1

va_start(args, fmt)和va_end(args)使用可变参数(可见参数用法不在这里分析),在kobject_add_varg中将把fmt指向的内容赋给kobject的name字段。下面我们详细看看kobject_add_varg函数:

static int kobject_add_varg(struct kobject *kobj, struct kobject *parent,

const char *fmt, va_list vargs)

{

int retval;

retval = kobject_set_name_vargs(kobj, fmt, vargs);

if (retval) {

printk(KERN_ERR "kobject: can not set name properly!\n");

return retval;

}

kobj->parent = parent;

return kobject_add_internal(kobj);

}

kobject_set_name_vargs(kobj, fmt, vargs),如果kobj的name字段指向的内容为空,则为分配一个内存空间并用fmt指向的内容初始化,把地址赋给kobj的name字段。

int kobject_set_name_vargs(struct kobject *kobj, const char *fmt,

va_list vargs)

{

const char *old_name = kobj->name;

char *s;

if (kobj->name && !fmt)

return 0;

kobj->name = kvasprintf(GFP_KERNEL, fmt, vargs);

if (!kobj->name)

return -ENOMEM;

/* ewww… some of these buggers have ‘/’ in the name … */

while ((s = strchr(kobj->name, ‘/’)))

s[0] = ‘!’;

kfree(old_name);

return 0;

}

char *kvasprintf(gfp_t gfp, const char *fmt, va_list ap)

{

unsigned int len;

char *p;

va_list aq;

va_copy(aq, ap);

len = vsnprintf(NULL, 0, fmt, aq);

va_end(aq);

p = kmalloc(len+1, gfp);

if (!p)

return NULL;

vsnprintf(p, len+1, fmt, ap);

return p;

}

继续kobject_add_varg()返回kobject_add_internal(kobj),就是在这个函数理为kobj创建文件系统结构:

static int kobject_add_internal(struct kobject *kobj)

{

int error = 0;

struct kobject *parent;

if (!kobj)

return -ENOENT;

if (!kobj->name || !kobj->name[0]) {

WARN(1, "kobject: (%p): attempted to be registered with empty "

"name!\n", kobj);

return -EINVAL;

}

检查kobj和它的name字段,不存在则返回错误信息。

parent = kobject_get(kobj->parent);

获得其父节点,并增加父节点的计数器,kobject结构中的kref字段用于容器的计数,kobject_get和kobject_put分别增加和减少计数器,如果计数器为0,则释放该kobject,kobject_get返回该kobject。

/* join kset if set, use it as parent if we do not already have one */

if (kobj->kset) {

if (!parent)

parent = kobject_get(&kobj->kset->kobj);

kobj_kset_join(kobj);

kobj->parent = parent;

}

在这里我们可以看到,如果调用kobject_create_and_add()时参数parent设为NULL,则会去检查kobj的kset是否存在,如果存在就会把kset所嵌套的kobj作为其父节点,并把kobj添加到kset中去。

pr_debug("kobject: ‘%s’ (%p): %s: parent: ‘%s’, set: ‘%s’\n",

kobject_name(kobj), kobj, __func__,

parent ? kobject_name(parent) : "<NULL>",

kobj->kset ? kobject_name(&kobj->kset->kobj) : "<NULL>");

打印一些调试信息,接着为kobj创建目录:

error = create_dir(kobj);

if (error) {

kobj_kset_leave(kobj);

kobject_put(parent);

kobj->parent = NULL;

/* be noisy on error issues */

if (error == -EEXIST)

printk(KERN_ERR "%s failed for %s with "

"-EEXIST, don’t try to register things with "

"the same name in the same directory.\n",

__func__, kobject_name(kobj));

else

printk(KERN_ERR "%s failed for %s (%d)\n",

__func__, kobject_name(kobj), error);

dump_stack();

} else

kobj->state_in_sysfs = 1;

return error;

}

如果创建不成功,则回滚上面的操作,成功的话则设置kobj的state_in_sysfs标志。

在看看create_dir()函数中具体创建了那些内容:

static int create_dir(struct kobject *kobj)

{

int error = 0;

if (kobject_name(kobj)) {

error = sysfs_create_dir(kobj);

if (!error) {

error = populate_dir(kobj);

if (error)

sysfs_remove_dir(kobj);

}

}

return error;

}

sysfs_create_dir()先为kobj创建了一个目录文件

int sysfs_create_dir(struct kobject * kobj)

{

struct sysfs_dirent *parent_sd, *sd;

int error = 0;

BUG_ON(!kobj);

if (kobj->parent)

parent_sd = kobj->parent->sd;

else

parent_sd = &sysfs_root;

error = create_dir(kobj, parent_sd, kobject_name(kobj), &sd);

if (!error)

kobj->sd = sd;

return error;

}

如果kobj->parent为NULL,就把&sysfs_root作为父节点sd,即在/sys下面创建结点。

然后调用populate_dir:

static int populate_dir(struct kobject *kobj)

{

struct kobj_type *t = get_ktype(kobj);

struct attribute *attr;

int error = 0;

int i;

if (t && t->default_attrs) {

for (i = 0; (attr = t->default_attrs[i]) != NULL; i++) {

error = sysfs_create_file(kobj, attr);

if (error)

break;

}

}

return error;

}

得到kobj的kobj_type,历遍kobj_type的default_attrs并创建属性文件,文件的操作会回溯到sysfs_ops的show和store会调用封装了attribute的kobj_attribute结构的store和show方法(在后面的代码中将会分析)。

由于上面kobject_init(kobj, &dynamic_kobj_ktype)用默认dynamic_kobj_ktype作为kobj_type参数,而dynamic_kobj_ktype的default_attrs为NULL,所以这里没有创建属性文件。

至此,我们已经知道了kobject_create_and_add()函数创建kobject,挂到父kobject,并设置其kobj_type,在文件系统中为其创建目录和属性文件等。

另外,如果我们已静态定义了要创建的kobject,则可以调用kobject_init_and_add()来注册kobject,其函数如下:

int kobject_init_and_add(struct kobject *kobj, struct kobj_type *ktype,

struct kobject *parent, const char *fmt, …)

{

va_list args;

int retval;

kobject_init(kobj, ktype);

va_start(args, fmt);

retval = kobject_add_varg(kobj, parent, fmt, args);

va_end(args);

return retval;

}

通过上面的分析我们很轻松就能理解这个函数。

内核提供注销kobject的函数是kobject_del()

void kobject_del(struct kobject *kobj)

{

if (!kobj)

return;

sysfs_remove_dir(kobj);

kobj->state_in_sysfs = 0;

kobj_kset_leave(kobj);

kobject_put(kobj->parent);

kobj->parent = NULL;

}

删除kobj目录及其目录下的属性文件,清kobj的state_in_sysfs标志,把kobj从kset中删除,减少kobj->parent的计数并设其指针为空。自己要先看得起自己,别人才会看得起你

LINUX设备驱动之设备模型一

相关文章:

你感兴趣的文章:

标签云: