Linux内核链表的浅析和模拟

linux内核的链表设计非常独特。和通常的把数据结构装入链表不同,linux反其道而行之,把链表节点装入数据结构。这样的做法很好地实现了对数据的封装。并且为所有的链表操作提供了统一的接口。简单而高效。关于链表所有操作的函数都在/linux/list.h文件里

PS:由于list.h文件没有署名的注释,民间猜测内核的链表机制很有可能就是Linux Torvalds本人的作品

内核中的链表通常是一个双向循环链表,节点定义如下(linux/types.h):

struct list_head {struct list_head *next, *prev;};

换句话说,这个节点就如同一个连接件,可以嵌入到任何数据结构中从而形成链表。当然它也可以独立存在作为一个链表的头。

这种设计方式让链表灵活了很多,比如可以在一个数据结构中插入两个list_head,使该结构同时存在于两个双链队列中,比如:内核中用于内存页面管理的page结构(mm.h)

typedef struct page{     struct list_head list;     struct list_head lru;     ......}

甚至用这种方式,可以把不同类型的结构串到一个链表里,在后面的测试程序中,我就演示了这样的例子。

这种设计方式还有一个最大的好处,内核中对链表中的所有操作(插入,删除,合并,遍历)都以list_head结构为参数,实现了统一的操作接口。

另一个问题随之而来,如何访问到每个节点的数据呢。且看linux精巧的设计:

由于在C中,一个结构中的变量偏移在编译时就被ABI固定下来,利用这一点,内核中的链表就可以通过list_head找到节点的入口,从而访问到节点中各个元素。

通过list.h中的宏list_entry实现:

/** * list_entry - get the struct for this entry * @ptr:the &struct list_head pointer. * @type:the type of the struct this is embedded in. * @member:the name of the list_struct within the struct. */#define list_entry(ptr, type, member) \container_of(ptr, type, member)

container_of 定义在kernel.h中

/** * container_of - cast a member of a structure out to the containing structure * @ptr:the pointer to the member. * @type:the type of the container struct this is embedded in. * @member:the name of the member within the struct. * */#define container_of(ptr, type, member) ({\const typeof( ((type *)0)->member ) *__mptr = (ptr);\(type *)( (char *)__mptr - offsetof(type,member) );})

注意:将__mptr转为char类型指针是为了在对其运算时,加减的单位为"1"。

offsetof定义在stddef.h中

#define offsetof(TYPE, MEMBER) ((size_t) &((TYPE *)0)->MEMBER)

返回成员MEMBER在结构TYPE中的偏移

简要解释下:

offsetof中,把0强制转换为结构的初始地址,然后对其成员取地址,所得的值即为该成员相对于结构入口的偏移。size_t是unsigned int类型,转换是为了便于后续计算。

container_of中,typeof是c语言关键字的一个新扩展,返回参数类型。该宏首先将ptr赋值给member类型的指针_mptr,然后用_mptr减去偏移,所得即为该节点的入口地址。

各种链表的操作接口,在list.h中定义,下面简要地罗列:

1、初始化链表:

linux没有链表头,使第一个节点的指针指向自己即完成初始化。

两种方式:1)

#define LIST_HEAD_INIT(name) { &(name), &(name) }#define LIST_HEAD(name) struct list_head name = LIST_HEAD_INIT(name)

2)

#define INIT_LIST_HEAD(ptr) do { \(ptr)->next = (ptr); (ptr)->prev = (ptr); \} while (0)

相应地,链表判空,就看头的next是否指向自己:

static inline int list_empty(const struct list_head *head){return head->next == head;}

2、添加节点:

static inline void __list_add(struct list_head *new,      struct list_head *prev,      struct list_head *next){next->prev = new;new->next = next;new->prev = prev;prev->next = new;}

头尾添加,分别如下调用即可:

__list_add(new, head, head->next);__list_add(new, head->prev, head);

3、删除节点

static inline void __list_del(struct list_head * prev, struct list_head * next){next->prev = prev;prev->next = next;}

4、搬移节点,把属于一个链表的节点移动到另一个链表

static inline void list_move(struct list_head *list, struct list_head *head);

5 还有一些其他操作,比如合并两个链表:

static inline void __list_splice(const struct list_head *list, struct list_head *prev, struct list_head *next){struct list_head *first = list->next;struct list_head *last = list->prev;first->prev = prev;prev->next = first;last->next = next;next->prev = last;}/** * list_splice - join two lists, this is designed for stacks * @list: the new list to add. * @head: the place to add it in the first list. */static inline void list_splice(const struct list_head *list,struct list_head *head){if (!list_empty(list))__list_splice(list, head, head->next);}

6 遍历,通过宏实现:

/** * list_for_each-iterate over a list * @pos:the &struct list_head to use as a loop cursor. * @head:the head for your list. */#define list_for_each(pos, head) \for (pos = (head)->next; pos != (head); pos = pos->next)

 * list_for_each_entry-iterate over list of given type * @pos:the type * to use as a loop cursor. * @head:the head for your list. * @member:the name of the list_struct within the struct. */#define list_for_each_entry(pos, head, member)\for (pos = list_entry((head)->next, typeof(*pos), member);\     &pos->member != (head); \     pos = list_entry(pos->member.next, typeof(*pos), member))

自己写了一个小程序作为本文结束,运用linux链表的设计思想,在同一链表中链接两种不同数据结构并遍历之。

#include<stdio.h>#include<stdlib.h>#define get_entry(ptr, structure, member) \((structure *)((char *)ptr - (unsigned int)&(((structure *)0) -> member)))#define init_list_head(p) do {\(p) -> prev = (p); (p) -> next = (p); \}while(0)typedef struct link_pointer_tag{struct link_pointer_tag *prev;struct link_pointer_tag *next;}link_pointer;typedef struct {int element1;link_pointer p;}link_node1;typedef struct {char element2;link_pointer p;}link_node2;link_pointer* head;link_pointer* create_node1(){int ele;link_node1* tmp_node1;if ((tmp_node1 = (link_node1*)malloc(sizeof(link_node1))) == NULL){printf("Not enough memery!\n");exit(0);}printf("Input the element of node: element1(int)\n");scanf("%d", &ele);tmp_node1 -> element1 = ele;return &(tmp_node1 -> p);}link_pointer* create_node2(){char ele;link_node2* tmp_node2;if ((tmp_node2 = (link_node2*)malloc(sizeof(link_node2))) == NULL){printf("Not enough memery!\n");exit(0);}printf("Input the element of node: element2(char)\n");scanf("%c", &ele);tmp_node2 -> element2 = ele;return &(tmp_node2 -> p);}void add_node(link_pointer* ptr, link_pointer* pre, link_pointer* next){pre -> next = ptr;ptr -> prev = pre;ptr -> next = next;next -> prev = ptr;}void create_list(){int lenth, i;head = NULL;printf("Input lenth:");scanf("%d", &lenth);for (i = 1; i <= lenth; i++){printf("The number of node %d:\n", i);if(i % 2 != 0){if(i == 1){head = create_node1();init_list_head(head);}else {add_node(create_node1(), head -> prev, head);}}else{add_node(create_node2(), head -> prev, head);}}}void show_all_node(){link_pointer* tmp = head;int count = 1;do{printf("The %dth node: ", count);if (count % 2 != 0)printf("%d\n", get_entry(tmp, link_node1, p) -> element1);if (count % 2 == 0)printf("%c\n", get_entry(tmp, link_node2, p) -> element2);count++;} while ((tmp = tmp -> next) != head);}int main(){setbuf(stdin,NULL);create_list();show_all_node();return 0;}

有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,

Linux内核链表的浅析和模拟

相关文章:

你感兴趣的文章:

标签云: