《linux 内核完全剖析》sched.c sched.h 代码分析笔记 – Jason L

sched.c sched.h 代码分析笔记

首先上header file

sched.h

#ifndef _SCHED_H#define _SCHED_H#define HZ 100#define NR_TASKS    64#define TASK_SIZE    0x04000000#define LIBRARY_SIZE    0x00400000#if (TASK_SIZE & 0x3fffff)#error "TASK_SIZE must be multiple of 4M"#endif#if (LIBRARY_SIZE & 0x3fffff)#error "LIBRARY_SIZE must be a multiple of 4M"#endif#if (LIBRARY_SIZE >= (TASK_SIZE/2))#error "LIBRARY_SIZE too damn big!"#endif#if (((TASK_SIZE>>16)*NR_TASKS) != 0x10000)#error "TASK_SIZE*NR_TASKS must be 4GB"#endif#define LIBRARY_OFFSET (TASK_SIZE - LIBRARY_SIZE)#define CT_TO_SECS(x)    ((x) / HZ)#define CT_TO_USECS(x)    (((x) % HZ) * 1000000/HZ)#define FIRST_TASK task[0]#define LAST_TASK task[NR_TASKS-1]#include <linux/head.h>#include <linux/fs.h>#include <linux/mm.h>#include <sys/param.h>#include <sys/time.h>#include <sys/resource.h>#include <signal.h>#if (NR_OPEN > 32)#error "Currently the close-on-exec-flags and select masks are in one long, max 32 files/proc"#endif#define TASK_RUNNING        0#define TASK_INTERRUPTIBLE    1#define TASK_UNINTERRUPTIBLE    2#define TASK_ZOMBIE        3#define TASK_STOPPED        4#ifndef NULL#define NULL ((void *) 0)#endifextern int copy_page_tables(unsigned long from, unsigned long to, long size);extern int free_page_tables(unsigned long from, unsigned long size);extern void sched_init(void);extern void schedule(void);extern void trap_init(void);extern void panic(const char * str);extern int tty_write(unsigned minor,char * buf,int count);typedef int (*fn_ptr)();struct i387_struct {    long    cwd;    long    swd;    long    twd;    long    fip;    long    fcs;    long    foo;    long    fos;    long    st_space[20];    /* 8*10 bytes for each FP-reg = 80 bytes */};struct tss_struct {    long    back_link;    /* 16 high bits zero */    long    esp0;    long    ss0;        /* 16 high bits zero */    long    esp1;    long    ss1;        /* 16 high bits zero */    long    esp2;    long    ss2;        /* 16 high bits zero */    long    cr3;    long    eip;    long    eflags;    long    eax,ecx,edx,ebx;    long    esp;    long    ebp;    long    esi;    long    edi;    long    es;        /* 16 high bits zero */    long    cs;        /* 16 high bits zero */    long    ss;        /* 16 high bits zero */    long    ds;        /* 16 high bits zero */    long    fs;        /* 16 high bits zero */    long    gs;        /* 16 high bits zero */    long    ldt;        /* 16 high bits zero */    long    trace_bitmap;    /* bits: trace 0, bitmap 16-31 */    struct i387_struct i387;};struct task_struct {/* these are hardcoded - don't touch */    long state;    /* -1 unrunnable, 0 runnable, >0 stopped */    long counter;    long priority;    long signal;    struct sigaction sigaction[32];    long blocked;    /* bitmap of masked signals *//* various fields */    int exit_code;    unsigned long start_code,end_code,end_data,brk,start_stack;    long pid,pgrp,session,leader;    int    groups[NGROUPS];    /*     * pointers to parent process, youngest child, younger sibling,     * older sibling, respectively.  (p->father can be replaced with     * p->p_pptr->pid)     */    struct task_struct    *p_pptr, *p_cptr, *p_ysptr, *p_osptr;    unsigned short uid,euid,suid;    unsigned short gid,egid,sgid;    unsigned long timeout,alarm;    long utime,stime,cutime,cstime,start_time;    struct rlimit rlim[RLIM_NLIMITS];    unsigned int flags;    /* per process flags, defined below */    unsigned short used_math;/* file system info */    int tty;        /* -1 if no tty, so it must be signed */    unsigned short umask;    struct m_inode * pwd;    struct m_inode * root;    struct m_inode * executable;    struct m_inode * library;    unsigned long close_on_exec;    struct file * filp[NR_OPEN];/* ldt for this task 0 - zero 1 - cs 2 - ds&ss */    struct desc_struct ldt[3];/* tss for this task */    struct tss_struct tss;};/* * Per process flags */#define PF_ALIGNWARN    0x00000001    /* Print alignment warning msgs */                    /* Not implemented yet, only for 486*//* *  INIT_TASK is used to set up the first task table, touch at * your own risk!. Base=0, limit=0x9ffff (=640kB) */#define INIT_TASK \/* state etc */    { 0,15,15, \/* signals */    0,{{},},0, \/* ec,brk... */    0,0,0,0,0,0, \/* pid etc.. */    0,0,0,0, \/* suppl grps*/ {NOGROUP,}, \/* proc links*/ &init_task.task,0,0,0, \/* uid etc */    0,0,0,0,0,0, \/* timeout */    0,0,0,0,0,0,0, \/* rlimits */   { {0x7fffffff, 0x7fffffff}, {0x7fffffff, 0x7fffffff},  \          {0x7fffffff, 0x7fffffff}, {0x7fffffff, 0x7fffffff}, \          {0x7fffffff, 0x7fffffff}, {0x7fffffff, 0x7fffffff}}, \/* flags */    0, \/* math */    0, \/* fs info */    -1,0022,NULL,NULL,NULL,NULL,0, \/* filp */    {NULL,}, \    { \        {0,0}, \/* ldt */    {0x9f,0xc0fa00}, \        {0x9f,0xc0f200}, \    }, \/*tss*/    {0,PAGE_SIZE+(long)&init_task,0x10,0,0,0,0,(long)&pg_dir,\     0,0,0,0,0,0,0,0, \     0,0,0x17,0x17,0x17,0x17,0x17,0x17, \     _LDT(0),0x80000000, \        {} \    }, \}extern struct task_struct *task[NR_TASKS];extern struct task_struct *last_task_used_math;extern struct task_struct *current;extern unsigned long volatile jiffies;extern unsigned long startup_time;extern int jiffies_offset;#define CURRENT_TIME (startup_time+(jiffies+jiffies_offset)/HZ)extern void add_timer(long jiffies, void (*fn)(void));extern void sleep_on(struct task_struct ** p);extern void interruptible_sleep_on(struct task_struct ** p);extern void wake_up(struct task_struct ** p);extern int in_group_p(gid_t grp);/* * Entry into gdt where to find first TSS. 0-nul, 1-cs, 2-ds, 3-syscall * 4-TSS0, 5-LDT0, 6-TSS1 etc ... */#define FIRST_TSS_ENTRY 4#define FIRST_LDT_ENTRY (FIRST_TSS_ENTRY+1)#define _TSS(n) ((((unsigned long) n)<<4)+(FIRST_TSS_ENTRY<<3))#define _LDT(n) ((((unsigned long) n)<<4)+(FIRST_LDT_ENTRY<<3))#define ltr(n) __asm__("ltr %%ax"::"a" (_TSS(n)))#define lldt(n) __asm__("lldt %%ax"::"a" (_LDT(n)))#define str(n) \__asm__("str %%ax\n\t" \    "subl %2,%%eax\n\t" \    "shrl $4,%%eax" \    :"=a" (n) \    :"a" (0),"i" (FIRST_TSS_ENTRY<<3))/* *    switch_to(n) should switch tasks to task nr n, first * checking that n isn't the current task, in which case it does nothing. * This also clears the TS-flag if the task we switched to has used * tha math co-processor latest. */#define switch_to(n) {\struct {long a,b;} __tmp; \__asm__("cmpl %%ecx,_current\n\t" \    "je 1f\n\t" \    "movw %%dx,%1\n\t" \    "xchgl %%ecx,_current\n\t" \    "ljmp %0\n\t" \    "cmpl %%ecx,_last_task_used_math\n\t" \    "jne 1f\n\t" \    "clts\n" \    "1:" \    ::"m" (*&__tmp.a),"m" (*&__tmp.b), \    "d" (_TSS(n)),"c" ((long) task[n])); \}#define PAGE_ALIGN(n) (((n)+0xfff)&0xfffff000)#define _set_base(addr,base) \__asm__("movw %%dx,%0\n\t" \    "rorl $16,%%edx\n\t" \    "movb %%dl,%1\n\t" \    "movb %%dh,%2" \    ::"m" (*((addr)+2)), \      "m" (*((addr)+4)), \      "m" (*((addr)+7)), \      "d" (base) \    :"dx")#define _set_limit(addr,limit) \__asm__("movw %%dx,%0\n\t" \    "rorl $16,%%edx\n\t" \    "movb %1,%%dh\n\t" \    "andb $0xf0,%%dh\n\t" \    "orb %%dh,%%dl\n\t" \    "movb %%dl,%1" \    ::"m" (*(addr)), \      "m" (*((addr)+6)), \      "d" (limit) \    :"dx")#define set_base(ldt,base) _set_base( ((char *)&(ldt)) , base )#define set_limit(ldt,limit) _set_limit( ((char *)&(ldt)) , (limit-1)>>12 )#define _get_base(addr) ({\unsigned long __base; \__asm__("movb %3,%%dh\n\t" \    "movb %2,%%dl\n\t" \    "shll $16,%%edx\n\t" \    "movw %1,%%dx" \    :"=d" (__base) \    :"m" (*((addr)+2)), \     "m" (*((addr)+4)), \     "m" (*((addr)+7))); \__base;})#define get_base(ldt) _get_base( ((char *)&(ldt)) )#define get_limit(segment) ({ \unsigned long __limit; \__asm__("lsll %1,%0\n\tincl %0":"=r" (__limit):"r" (segment)); \__limit;})#endif

对于_TSS 和 _LDT两个宏定义

#define FIRST_TSS_ENTRY 4#define FIRST_LDT_ENTRY (FIRST_TSS_ENTRY+1)#define _TSS(n) ((((unsigned long) n)<<4)+(FIRST_TSS_ENTRY<<3))#define _LDT(n) ((((unsigned long) n)<<4)+(FIRST_LDT_ENTRY<<3))

TSS是第五个(IDT是第一个) ,每一个描述符号占8byte ,于是有 FIRST_TSS_ENRTY<<3

每个任务都有两个堆栈,分别用于用户态和内核态程序的执行,并且分别称为用户态堆栈和内核态堆栈。处于不同的CPU特权级中,这两个堆栈之间的主要区别在于任务的内核态堆栈很小,所保存的数量最多不能超过4096-任务数据结构块个字节,大约为3K,而任务的用户态堆栈却可以在用户的64M空间内延伸。

show_task

void show_task(int nr,struct task_struct * p)//显示p指向的nr号进程的相关信息{    int i,j = 4096-sizeof(struct task_struct);//j记录了任务数据结构之后的堆栈空间大小    printk("%d: pid=%d, state=%d, father=%d, child=%d, ",nr,p->pid,        p->state, p->p_pptr->pid, p->p_cptr ? p->p_cptr->pid : -1);//打印关于p指向进程的各种信息    i=0;    while (i<j && !((char *)(p+1))[i])//很巧妙的计算了任务数据结构之后的空字节(数据内容为0)的大小        i++;    printk("%d/%d chars free in kstack\n\r",i,j);//内核栈最大为j,空字节数是i,分数比率i/j    printk("   PC=%08X.", *(1019 + (unsigned long *) p));    //p指向结构体起始地址偏移1019,应该是指数据结构中的TSS结构内EIP处的值(所谓PC指针),eip的值即当前任务用户态的代码指针。    if (p->p_ysptr || p->p_osptr) //如果p进程有同辈的进程,那么打印它们的进程号        printk("   Younger sib=%d, older sib=%d\n\r",            p->p_ysptr ? p->p_ysptr->pid : -1,            p->p_osptr ? p->p_osptr->pid : -1);    else        printk("\n\r");}

关于show_task讨论的一些帖子

http://www.oldlinux.org/oldlinux/viewthread.php?tid=12182

http://www.oldlinux.org/oldlinux/viewthread.php?tid=14683

show_task

//调用show_task,打印所有非空进程的信息void show_state(void){    int i;    printk("\rTask-info:\n\r");    for (i=0;i<NR_TASKS;i++)        if (task[i])//扫描task数组,非空即打印对应task[i]进程相关信息            show_task(i,task[i]);}

在内核中的调度程序用于选择系统中下一个要运行的进程。这种选择运行机制是多任务操作系统的基础。调度程序可以看作为处于运行状态都进程之间分配CPU运行时间的管理代码。Linux进程是抢占式的,但被抢占的进程仍处于TASK_RUNNING状态,只是暂时没有被CPU运行。进程的抢占发生在进程处于用于态执行阶段,在内核态执行时是不能被强制的。(0.12的不可以,貌似现在的可以了)

schdule()函数首先扫描任务数组,通过比较每个就绪状态任务的运行时间递减滴答计数counter的值来确定当前哪个进程运行的时间最少,哪个counter值最大,就表示运行时间还不长,于是就选中该进程,并使用任务切换宏函数到该进程运行。

schedule()

void schedule(void){int i,next,c;struct task_struct ** p;/* check alarm, wake up any interruptible tasks that have got a signal */for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)//把p初始化为指向最后一个进程的地址的指针,逆向扫描所有进程if (*p) {//*p 指向当前进程的指针if ((*p)->timeout && (*p)->timeout < jiffies) {//这里< 没错,我一直很纠结为什么不是> 这里jiffies是渐变的,持续变的,而timeout 只是作为一个阈值(*p)->timeout = 0;//如果当前进程等待很久了((*p)->timeout < jiffies),并且这个进程处于TASK_INTERRUPTIBLE//我们就把这个进程置与TASK_RUNNING状态if ((*p)->state == TASK_INTERRUPTIBLE)(*p)->state = TASK_RUNNING;}if ((*p)->alarm && (*p)->alarm < jiffies) { //如果此时jiffies大于alarm信号周期,则让将SIGALRM写入进程的信号位(*p)->signal |= (1<<(SIGALRM-1));(*p)->alarm = 0;}if (((*p)->signal & ~(_BLOCKABLE & (*p)->blocked)) &&(*p)->state==TASK_INTERRUPTIBLE)// 除SIGKILL SIGSTOP信号外,其他信号都是非阻塞状态的话,并且进程处于TASK_INTERRUPTIBLE(*p)->state=TASK_RUNNING;//我们就把这个进程置与TASK_RUNNING状态} /* this is the scheduler proper: */while (1) {c = -1;next = 0;i = NR_TASKS;p = &task[NR_TASKS];while (--i) {//把所有进程都扫一遍,counter是递减的,找出counter最大的进程,保存在next里面if (!*--p)//当前*p指向进程为空,下一个continue;if ((*p)->state == TASK_RUNNING && (*p)->counter > c)//counter是任务运行时间计数,注意处于scheduled状态的进程也是在运行是,只是没有使用CPU而已c = (*p)->counter, next = i;}if (c) break;//c>0 就说明找到了已经运行一段时间,并且运行时间最短的进程,跳出while(1)for(p = &LAST_TASK ; p > &FIRST_TASK ; --p)//如果c==0,说明所有schedule的进程都没有运行 if (*p)(*p)->counter = ((*p)->counter >> 1) +(*p)->priority; //重新计算counter = counter/2 + priority}switch_to(next);//让进程next使用CPU}

每当选择出一个新的可以运行的进程时,switch_to()宏执行实际进程切换操作。该宏会把CPU的当前进程状态(context)切换成新进程的状态。

在切换之前,switch_to首先检查要切换的进程是否就是当前进程。如果是,啥也别做,直接退出。如果不是,就把内核全局变量current置为新任务的指针。然后ljmp 长跳转到新任务的状态段TSS组成的地址处,造成CPU执行任务切换操作。此时,CPU会把其所有寄存器的状态保存到当前任务寄存器TR中TSS段选择所指向的当前进程任务数据结构,然后把新任务状态段选择符所指向的新任务数据结构tss结构中的寄存器恢复到CPU中,系统正式开始运行新切换的任务。

switch_to

#define switch_to(n) {\struct {long a,b;} __tmp; \__asm__("cmpl %%ecx,_current\n\t" \ //进程n是当前current进程,直接结束switch,否则继续je之后的内容    "je 1f\n\t" \    "movw %%dx,%1\n\t" \ //将新任务的TSS的16选择符号存入 _tmp.b 中    "xchgl %%ecx,_current\n\t" \ //交换ecx 和current的值,这个时候current就是next指向的进程了!    "ljmp %0\n\t" \ // long jump 把控制流跳转到 %0 _tmp 处 这个long jump比较“特别”,一句两句注释说不清楚,    //可能看到这里会疑惑都跳转了,下面的语句还有什么用?有用!因为会“跳回来”    "cmpl %%ecx,_last_task_used_math\n\t" \ // 原任务是否使用过协处理器    "jne 1f\n\t" \//没用过,跳到l,结束    "clts\n" \//用过,清理    "1:" \ //切换TS标识    ::"m" (*&__tmp.a),"m" (*&__tmp.b), \    "d" (_TSS(n)),"c" ((long) task[n])); \}

为什么会执行这句话

cmpl %%ecx,_last_task_used_math

既然任务切换时CPU会恢复寄存器现场,那么它当然也会保存寄存器现场了。这些寄存器现场都会被写入原任务的tss结构里,值得注意的是,EIP会指向引起任务切换指令ljmp的下一条指令cmpl,所以,很明显,当原任务有朝一日再次被调度运行时,它将从EIP所指的地方,而这个地方恰巧是cmpl !比较有用的一个帖子:

http://www.oldlinux.org/oldlinux/archiver/?tid-5390.html

sys_pause

int sys_pause(void) //把当前进程转换成可中断的等待状态,并重新调度{    current->state = TASK_INTERRUPTIBLE;    schedule();    return 0;}

__sleep_on

static inline void __sleep_on(struct task_struct **p, int state)//看的时候一定要记住,这个_sleep_on 的作用就是把当前进程正等待资源响应或者不在内存时先让他schedule一下,//让别的程序先运行一段时间的,//等到自己等待的资源响应之后,这个时候才跳过if判断,执行后面的语句{    struct task_struct *tmp;    if (!p)//常规检查p 为0的时候直接返回        return;    if (current == &(init_task.task)) //如果当前进程是        panic("task[0] trying to sleep");    tmp = *p;// tmp 指向原等待队列的头指针    *p = current; //*p 指向等待队列的头指针,把current放入等待队列    current->state = state;repeat:    schedule();    if (*p && *p != current) {    //如果*p是 等待队列的头指针,不进入,否则goto一直重复schedule,直到当前current进程是*p        (**p).state = 0;        current->state = TASK_UNINTERRUPTIBLE;        goto repeat;    }    if (!*p)        printk("Warning: *P = NULL\n\r");    if (*p = tmp) // 恢复原来的等待队列,*p 指向原来的等待队列头,逐出current进程        tmp->state=0; //TASK_RUNNING}

interruptible_sleep_on

void interruptible_sleep_on(struct task_struct **p) //可中断睡眠{    __sleep_on(p,TASK_INTERRUPTIBLE);}

sleep_on

void sleep_on(struct task_struct **p)//不可中断睡眠{    __sleep_on(p,TASK_UNINTERRUPTIBLE);}

wake_up

void wake_up(struct task_struct **p)//唤醒进程{    if (p && *p) {        if ((**p).state == TASK_STOPPED)            printk("wake_up: TASK_STOPPED");        if ((**p).state == TASK_ZOMBIE)            printk("wake_up: TASK_ZOMBIE");        (**p).state=0; //TASK_RUNNING    }}

get_pid,getppid,getuid,geteuid,getgid,sys_nice

int sys_getpid(void) //各种系统调用查看进程相关信息{    return current->pid;}int sys_getppid(void){    return current->p_pptr->pid;}int sys_getuid(void){    return current->uid;}int sys_geteuid(void){    return current->euid;}int sys_getgid(void){    return current->gid;}int sys_getegid(void){    return current->egid;}int sys_nice(long increment){    if(current->priority-increment>0)       current->priority -=increment;    return 0;}

sched_init

void sched_init(void)//schedule 的初始化 被main.c 调用,真心之只能大概看懂,很多初始化设置不知道为什么{    int i;    struct desc_struct * p;    if (sizeof(struct sigaction) !=16)       panic("Struct sigactionMUST be 16 bytes");    set_tss_desc(gdt+FIRST_TSS_ENTRY,&(init_task.task.tss));    set_ldt_desc(gdt+FIRST_LDT_ENTRY,&(init_task.task.ldt));    p = gdt+2+FIRST_TSS_ENTRY;    for(i=1;i<NR_TASKS;i++) {    //从1开始,跳过了进程init,保护好刚已经设置好的init_task    //任务清零,描述符清零       task[i] = NULL;       p->a=p->b=0; //偏址清零       p++;       p->a=p->b=0; //TSS 清零       p++;    }/* Clear NT, so that we won't have troubles with that later on */ //从这里我就不知道发生鸟神马。。。T-T    __asm__("pushfl ; andl$0xffffbfff,(%esp) ; popfl");    ltr(0);    lldt(0);    outb_p(0x36,0x43);       /* binary, mode 3, LSB/MSB, ch 0 */    outb_p(LATCH & 0xff , 0x40);    /* LSB */    outb(LATCH >> 8 , 0x40); /* MSB */    set_intr_gate(0x20,&timer_interrupt);    outb(inb_p(0x21)&~0x01,0x21);    set_system_gate(0x80,&system_call);}

而有的旅行是释放负面情绪,换个心情,轻装上阵。

《linux 内核完全剖析》sched.c sched.h 代码分析笔记 – Jason L

相关文章:

你感兴趣的文章:

标签云: