《linux 内核完全剖析》 exit.c 代码分析笔记 – Jason Leaster

exit.c 代码分析笔记release

释放进程的函数release() 主要根据指定进程的任务数据结构指针,在任务数组中删除指定的进程指针,释放相关内存页,并立刻让内核重新调度进程的运行。

void release(struct task_struct * p) //释放p指向的进程{    int i;    if (!p) //常规检测p是否为0        return;    if (p == current) { //不能把自己给释放了        printk("task releasing itself\n\r");        return;    }    for (i=1 ; i<NR_TASKS ; i++) //扫描所有的进程        if (task[i]==p) { //找出p进程            task[i]=NULL; //把p置空            /* Update links */            if (p->p_osptr) //调整链表                p->p_osptr->p_ysptr = p->p_ysptr;            if (p->p_ysptr)                p->p_ysptr->p_osptr = p->p_osptr;            else                p->p_pptr->p_cptr = p->p_osptr;            free_page((long)p); //释放p进程占用的内存页            schedule();//任务调度            return;        }    panic("trying to release non-existent task");}

bad_task_ptr 和audit_ptree

#ifdef DEBUG_PROC_TREE //下面这部分代码是调试用的/* * Check to see if a task_struct pointer is present in the task[] array * Return 0 if found, and 1 if not found. */int bad_task_ptr(struct task_struct *p){    int     i;    if (!p)        return 0;    for (i=0 ; i<NR_TASKS ; i++)        if (task[i] == p)            return 0;    return 1; //如果p不在task数组里面,那这个指针就有问题!}    /* * This routine scans the pid tree and make sure the rep invarient still * holds.  Used for debugging only, since it's very slow.... * * It looks a lot scarier than it really is.... we're doing ?nothing more * than verifying the doubly-linked list found?in p_ysptr and p_osptr, * and checking it corresponds with the process tree defined by p_cptr and * p_pptr; */void audit_ptree() //其实不难,就是打印进程树的相关信息,方便调试用{    int    i;    for (i=1 ; i<NR_TASKS ; i++) {        if (!task[i])            continue;        if (bad_task_ptr(task[i]->p_pptr))            printk("Warning, pid %d's parent link is bad\n",                task[i]->pid);        if (bad_task_ptr(task[i]->p_cptr))            printk("Warning, pid %d's child link is bad\n",                task[i]->pid);        if (bad_task_ptr(task[i]->p_ysptr))            printk("Warning, pid %d's ys link is bad\n",                task[i]->pid);        if (bad_task_ptr(task[i]->p_osptr))            printk("Warning, pid %d's os link is bad\n",                task[i]->pid);        if (task[i]->p_pptr == task[i])            printk("Warning, pid %d parent link points to self\n");        if (task[i]->p_cptr == task[i])            printk("Warning, pid %d child link points to self\n");        if (task[i]->p_ysptr == task[i])            printk("Warning, pid %d ys link points to self\n");        if (task[i]->p_osptr == task[i])            printk("Warning, pid %d os link points to self\n");        if (task[i]->p_osptr) {            if (task[i]->p_pptr != task[i]->p_osptr->p_pptr)                printk(            "Warning, pid %d older sibling %d parent is %d\n",                task[i]->pid, task[i]->p_osptr->pid,                task[i]->p_osptr->p_pptr->pid);            if (task[i]->p_osptr->p_ysptr != task[i])                printk(        "Warning, pid %d older sibling %d has mismatched ys link\n",                task[i]->pid, task[i]->p_osptr->pid);        }        if (task[i]->p_ysptr) {            if (task[i]->p_pptr != task[i]->p_ysptr->p_pptr)                printk(            "Warning, pid %d younger sibling %d parent is %d\n",                task[i]->pid, task[i]->p_osptr->pid,                task[i]->p_osptr->p_pptr->pid);            if (task[i]->p_ysptr->p_osptr != task[i])                printk(        "Warning, pid %d younger sibling %d has mismatched os link\n",                task[i]->pid, task[i]->p_ysptr->pid);        }        if (task[i]->p_cptr) {            if (task[i]->p_cptr->p_pptr != task[i])                printk(            "Warning, pid %d youngest child %d has mismatched parent link\n",                task[i]->pid, task[i]->p_cptr->pid);            if (task[i]->p_cptr->p_ysptr)                printk(            "Warning, pid %d youngest child %d has non-NULL ys link\n",                task[i]->pid, task[i]->p_cptr->pid);        }    }}#endif /* DEBUG_PROC_TREE */

send_sig

static inline int send_sig(long sig,struct task_struct * p,int priv) //给进程p,发送信号。priv 是强制发送信号的标识{    if (!p) //常规的p非空检测        return -EINVAL;    if (!priv && (current->euid!=p->euid) && !suser())    //如果不具有超级用户权限,又不是当前session里面的进程,且没有强制发送信号,进入if,return        return -EPERM;    if ((sig == SIGKILL) || (sig == SIGCONT)) { //如果要发送的信号是SIGKILL或者SIGCONT        if (p->state == TASK_STOPPED) //如果当前进程处于stop状态,则将其置于TASK_RUNNING状态            p->state = TASK_RUNNING;        p->exit_code = 0;        p->signal &= ~( (1<<(SIGSTOP-1)) | (1<<(SIGTSTP-1)) |                (1<<(SIGTTIN-1)) | (1<<(SIGTTOU-1)) ); //消除SIGSTOP SIGTSTP SIGTTIN SIGTTOU    }    /* If the signal will be ignored, don't even post it */    if ((int) p->sigaction[sig-1].sa_handler == 1) //如果handler是 ignore 就不要送信号鸟。。        return 0;    /* Depends on order SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU */    if ((sig >= SIGSTOP) && (sig <= SIGTTOU))    //如果信号含有 SIGSTOP, SIGTSTP, SIGTTIN, SIGTTOU其中任何信号,那么就消除SIGCONT信号        p->signal &= ~(1<<(SIGCONT-1));    /* Actually deliver the signal */    p->signal |= (1<<(sig-1)); //最后这里才把信号写入信号变量    return 0;}

session_of_pgrp

int session_of_pgrp(int pgrp) //获取process group的session ID ,没有找到返回-1{    struct task_struct **p;     for (p = &LAST_TASK ; p > &FIRST_TASK ; --p)        if ((*p)->pgrp == pgrp)            return((*p)->session);    return -1;}

kill_pg

int kill_pg(int pgrp, int sig, int priv) //给指定的进程组发送信号{    struct task_struct **p;    int err,retval = -ESRCH; //指定的进程不存在    int found = 0;    if (sig<1 || sig>32 || pgrp<=0)        return -EINVAL;     for (p = &LAST_TASK ; p > &FIRST_TASK ; --p)        if ((*p)->pgrp == pgrp) { //对每一个属于process group的进程发送信号sig            if (sig && (err = send_sig(sig,*p,priv)))                retval = err;            else                found++;        }    return(found ? 0 : retval);}

kill_proc

int kill_proc(int pid, int sig, int priv) //给指定进程发送信号{     struct task_struct **p;    if (sig<1 || sig>32)        return -EINVAL;    for (p = &LAST_TASK ; p > &FIRST_TASK ; --p)        if ((*p)->pid == pid)            return(sig ? send_sig(sig,*p,priv) : 0);    return(-ESRCH);}

sys_kill

系统调用sys_kill 用于项进程发送任何指定的信号,根据参数pid不同的数值,该系统调用会向不同的进或进程组发送信号。

/* * POSIX specifies that kill(-1,sig) is unspecified, but what we have * is probably wrong.  Should make it like BSD or SYSV. */int sys_kill(int pid,int sig){    struct task_struct **p = NR_TASKS + task;    int err, retval = 0;    if (!pid) //如果是进程0 init ,用最高权限发送信号,将信号发送给当前进程所处进程组的所有进程        return(kill_pg(current->pid,sig,0));    if (pid == -1) { //如果 pid是-1,把信号发送到除了init进程外的所有进程!        while (--p > &FIRST_TASK)            if (err = send_sig(sig,*p,0))                retval = err;        return(retval);    }    if (pid < 0) //如果pid<0,发送到|pid| 所处进程组的所有进程        return(kill_pg(-pid,sig,0));    /* Normal kill */    return(kill_proc(pid,sig,0)); //否则,发送到进程pid}

is_orphaned_pgrp

关于孤儿进程组的探讨

/* * Determine if a process group is "orphaned", according to the POSIX * definition in 2.2.2.52.  Orphaned process groups are not to be affected * by terminal-generated stop signals.  Newly orphaned process groups are * to receive a SIGHUP and a SIGCONT. * * "I ask you, have you ever known what it is to be an orphan?" */int is_orphaned_pgrp(int pgrp) //判断是否为一个孤儿进程组{    struct task_struct **p;    for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) {        if (!(*p) || //如果进程不存在,下一个            ((*p)->pgrp != pgrp) ||  // 如果进程所处的进程组不是pgrp,下一个            ((*p)->state == TASK_ZOMBIE) || // 进程的状态是zombie,下一个            ((*p)->p_pptr->pid == 1)) //进程parent是init ,下一个            continue;        if (((*p)->p_pptr->pgrp != pgrp) && //如果父进程所在的组不在pgrp,但是父进程所在的session存在            ((*p)->p_pptr->session == (*p)->session))            return 0;    }    return(1);    /* (sighing) "Often!" */}

has_stopped_jobs

static int has_stopped_jobs(int pgrp) //判断进程组内是否有进程处于TASK_STOPPED状态{    struct task_struct ** p;    for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) {        if ((*p)->pgrp != pgrp)            continue;        if ((*p)->state == TASK_STOPPED)            return(1);    }    return(0);}

do_exit

volatile void do_exit(long code){    struct task_struct *p;    int i;    free_page_tables(get_base(current->ldt[1]),get_limit(0x0f));    free_page_tables(get_base(current->ldt[2]),get_limit(0x17));    /*这里采用的两个参数0x0f即1111B,因此他指向的段优先级为3,存储在LDT表中,索引为1。也就是当前任务段的代码段描述符。另外一个参数0x17即10111B,因此他指向的段优先级为3,存储在LDT表中,索引为2.也就是当前任务的数及堆栈段描述符。这样,通过get_limit(0x0f)和get_limit(0x17)就得到了当前任务代码段和数据堆栈段的长度。因此,free_page_tables(get_base(current->ldt[1]),get_limit(0x0f));free_page_tables(get_base(current->ldt[2]),get_limit(0x17));就释放了当前任务的代码段和数据堆栈段。*/    for (i=0 ; i<NR_OPEN ; i++)        if (current->filp[i]) //filp文件结构指针表,filp[i]就是文件i被打开的ID            sys_close(i); //关闭进程当前打开的文件    iput(current->pwd); //和fs inode有关系    current->pwd = NULL; //当前进程的工作目录置为NULL    iput(current->root);//和fs inode有关系    current->root = NULL;//当前进程的根目录置为NULL    iput(current->executable);//和fs inode有关系    current->executable = NULL;//当前进程的执行程序文件的i节点置为NULL    iput(current->library);//和fs inode有关系    current->library = NULL;//当前进程的库文件置为NULL    current->state = TASK_ZOMBIE; //状态置为TASK_ZOMBIE    current->exit_code = code; //设置进程退出码    /*     * Check to see if any process groups have become orphaned     * as a result of our exiting, and if they have any stopped     * jobs, send them a SIGUP and then a SIGCONT.  (POSIX 3.2.2.2)     *     * Case i: Our father is in a different pgrp than we are     * and we were the only connection outside, so our pgrp     * is about to become orphaned.      */    if ((current->p_pptr->pgrp != current->pgrp) &&        (current->p_pptr->session == current->session) &&        is_orphaned_pgrp(current->pgrp) &&        has_stopped_jobs(current->pgrp)) { //如果当前进程组是个orphaned group        kill_pg(current->pgrp,SIGHUP,1);        //用于只是这些进程和当前session 断开联系,我这里不是很明白为什么要发送SIGHUP 和 SIGCONT        kill_pg(current->pgrp,SIGCONT,1);    }    /* Let father know we died */    current->p_pptr->signal |= (1<<(SIGCHLD-1)); // 告诉parent process 当前进程要挂掉鸟        /*     * This loop does two things:     *       * A.  Make init inherit all the child processes     * B.  Check to see if any process groups have become orphaned     *    as a result of our exiting, and if they have any stopped     *    jons, send them a SIGUP and then a SIGCONT.  (POSIX 3.2.2.2)     */    if (p = current->p_cptr) { //如果当前进程的child process 非空,进入if        while (1) {            p->p_pptr = task[1]; //让init进程领养current 进程的child 进程            if (p->state == TASK_ZOMBIE) //p进程沦为zombie                task[1]->signal |= (1<<(SIGCHLD-1)); //向init进程发送SIGCHLD信号            /*             * process group orphan check             * Case ii: Our child is in a different pgrp             * than we are, and it was the only connection             * outside, so the child pgrp is now orphaned.             */            if ((p->pgrp != current->pgrp) &&                (p->session == current->session) &&                is_orphaned_pgrp(p->pgrp) &&                has_stopped_jobs(p->pgrp)) {                //判断p进程所在进程组是否是orphaned group,如果是。发送SIGHUP和SIGCONT信号                kill_pg(p->pgrp,SIGHUP,1);                kill_pg(p->pgrp,SIGCONT,1);            }            if (p->p_osptr) { //如果p_osptr非空,则把p->p_osptr赋值给p                p = p->p_osptr;                continue; //下一轮循环,知道p_osptr为NULL            }            /*             * This is it; link everything into init's children             * and leave             */            p->p_osptr = task[1]->p_cptr;            task[1]->p_cptr->p_ysptr = p;            task[1]->p_cptr = current->p_cptr; //这三句把这个child process —— p 更新为 init 进程的 最年轻的child process            current->p_cptr = 0; //处理完所有的child process ,把 当前进程的p_cptr置为NULL            break; //处理完了跳出while        }    }    if (current->leader) { //如果当前进程是session leader        struct task_struct **p;        struct tty_struct *tty;        if (current->tty >= 0) { //切断当前进程和terminal 的联系            tty = TTY_TABLE(current->tty); //tty 还没看布吉岛。。。            if (tty->pgrp>0)                kill_pg(tty->pgrp, SIGHUP, 1);            tty->pgrp = 0;            tty->session = 0;        }         for (p = &LAST_TASK ; p > &FIRST_TASK ; --p) //把所有和当前进程同一个session的进程的tty都置为-1            if ((*p)->session == current->session)                (*p)->tty = -1;    }    if (last_task_used_math == current)    //数字协处理器木有看。。。布吉岛,    //但是语句的意思是上次用过协处理器的进程是当前进程的话酒吧last_task_used_math 置为NULL        last_task_used_math = NULL;#ifdef DEBUG_PROC_TREE    audit_ptree();#endif    schedule(); //进程调度}

sys_exit

int sys_exit(int error_code) //系统调用sys_exit函数,通过调用do_exit 函数来实现{    do_exit((error_code&0xff)<<8);    //error_code是用户程序提供的退出状态信息,只有低字节有效    //把error_code 左移八位是空出第八位供wait()和waitpid()函数使用}

sys_waitpid

用于挂起当前进程,知道pid指定的进程退出或者收到要求该进程终止的信号,或者是需要调用一个signal handler。如果pid 所指的进程早已退出(zombie)则本调用立刻返回。子进程的所有资源将被释放。

int sys_waitpid(pid_t pid,unsigned long * stat_addr, int options)  //其实我一般都木有怎么用stat_addr 这边选项,一般我都NULL了 <—_<—//waitpid居然放在。。。exit.c 里,木有别的,只有惊奇{    int flag;    struct task_struct *p;    unsigned long oldblocked;    verify_area(stat_addr,4); //验证stat_addr 地址处4byte 可写repeat:    flag=0;    for (p = current->p_cptr ; p ; p = p->p_osptr) {        if (pid>0) {            if (p->pid != pid) //找到pid描述的child进程的指针                continue;        } else if (!pid) { //如果pid等于0, 找到pid 所在的进程组            if (p->pgrp != current->pgrp)                continue;        } else if (pid != -1) {   //如果pid < -1 ,找到|pid|所在的进程组            if (p->pgrp != -pid)                continue;        }        // 如果以上判断田间都没进if去,pid = -1 ,这里不是很明白,看完fork之后回头再update        switch (p->state) {            case TASK_STOPPED: //如果进程p处于TASK_STOPPED状态                if (!(options & WUNTRACED) ||  //如果option的WUNTRACED 没有置位或者 exit_code 等于0 ,对下一个older child进行检测                    !p->exit_code)                    continue;                put_fs_long((p->exit_code << 8) | 0x7f,                    stat_addr);//把第一个参数写入第二个参数指向的地址                p->exit_code = 0; //正常退出                return p->pid; //返回结束child 的pid            case TASK_ZOMBIE:                current->cutime += p->utime;                current->cstime += p->stime; //更新时间参数                flag = p->pid;                put_fs_long(p->exit_code, stat_addr); //把p->exit_code 写入stat_addr                release(p); //释放进程p占用的内存页#ifdef DEBUG_PROC_TREE                audit_ptree();#endif                return flag;            default:                flag=1;                continue;        }    }    if (flag) { //存在不处于TASK_STOPPED 和TASK_ZOMBIE状态的进程        if (options & WNOHANG) //如果WNOHANG(表示若没有子进程处于退出或者终止状态就返回)在options中置位,就立刻返回0;            return 0; //一般我是不会用WNOHANG的。。。坦白的说我都没用过        current->state=TASK_INTERRUPTIBLE; //更新进程状态,置为TASK_INTERRUPTIBLE        oldblocked = current->blocked; //当前进程阻塞的信号储存于oldblocked中        current->blocked &= ~(1<<(SIGCHLD-1)); //消除当前进程中的SIGCHLD信号        schedule();//进程调度        current->blocked = oldblocked; //回复原来的信号图        if (current->signal & ~(current->blocked | (1<<(SIGCHLD-1))))//如果收到了除了SIGCHLD之外的其他信号,return 挂掉            return -ERESTARTSYS;        else            goto repeat; //否则goto到repeat 继续重复,直到return 出去。。。。。原来是这样waitpid的啊!    }    return -ECHILD; //没有找到pid对应的child process,返回错误码}

美好的生命应该充满期待、惊喜和感激

《linux 内核完全剖析》 exit.c 代码分析笔记 – Jason Leaster

相关文章:

你感兴趣的文章:

标签云: