基于ARM-Linux的无线气象数据通信系统的设计与实现

欢迎进入IT技术社区论坛,与200万技术人员互动交流 >>进入

自动气象站数据采集器一般基于单片机或PC/104总线控制器设计,具有与PC兼容性好、功耗低、体积紧凑等特点,然而如何设计出功能强大,网络传输功能强的自动气象站数据采集器,满足现代气象检测的要求,是一个值得研究的课题。

文中基于arm微处理器和Linux操作系统平台,借助前端无线传感器网络的数据输入,利用嵌入式Qt的开发优势并设计数据通信格式,完成无线气象数据通信系统的设计,实现了数据的可靠传输。为天气预报、科学研究、气象灾害预警等提供实时的气象观测数据。

1 无线气象数据通信系统的基本组成

如图1所示,无线气象数据通信系统主要由无线传感器网络节点、协调器、数据通信器(数据通信器以S3C2440AL为核心)、远程服务器等组成,完成对数据的采集、处理、传输和存储等功能。数据的采集基于CC2530的无线传感器网络,传感器节点将采集到的气象数据定时发送给协调器,再由协调器将数据通过RS232接口传给数据通信器,数据通信器按气象数据处理规范对接收到的数据进行处理后,一方面显示在液晶显示屏上,另一方面经以太网发送到远程服务器。此外,数据通信器保存接收的数据。

2 硬件电路设计

2.1 CC2530与S3C2440AL的连接

CC2530是TI公司以C51为内核的ZigBee芯片,它支持IEEE802.15.4标准以及ZigBee、ZigBee PRO和ZigBee RF4CE标准,提供101 dB的链路质量,具有高接收灵敏度和强抗干扰性,同时具有低功耗、低成本、时延短、高安全等特点。此外,系统采用Samsung S3C2440AL来实现高分辨率彩色显示、触摸控制、高速数据处理及管理、网络接口扩展等需要。

CC2530与S3C2440AL之间采用串口通信,其连接如图2所示。CC2530的串行数据发送端P0_3与S3C2440AL的串行数据接收端RXD1相连,CC25 30的串行数据接收端P0_2与S3C2440AL的串行数据发送端TXD1相连。此处将CC2530的设备类型设置为协调器,实现无线接收各个传感器节点发送的气象数据。

2.2 S3C2440AL外围电路设计

由于系统需要移植嵌入式Linux操作系统、安装微型数据库、运行可视化应用程序、存储气象数据以及将数据经过以太网发送给远程服务器,需要扩展液晶显示器、外部存储器、以太网控制器等。液晶显示屏采用320×240分辨率的3.5英寸触摸真彩液晶屏,SDRAM采用H57V25 62GTR,NANDFLASH采用K9F1216UOA,以太网控制器采用单芯片快速以太网MAC控制器DM9000。S3C2440AL部分外围电路如图3所示。

3 软件设计

下位机软件的核心是串口通信以及Socket通信。系统采用Qt4.5.0、Qt Creator 1.3.0作为数据通信器软件的开发工具,主要包括数据接收显示、存储以及发送给远程服务器等功能。

系统为了保证气象数据有效、高效、可靠地通信,该系统建立了如表1所示的数据帧格式。

协调器每次给数据通信器发送10字节数据,其中以“#”为起始符,紧跟4字节浮点数,第6字节表示气象要素类型,第8和第9字节分别为CRC检测的高位和低位,最后以“*”结束。CRC域是两个字节,它由协调器节点计算后加入到数据中,数据通信器对校验信息进行检查,若无错则接收该数据,否则放弃该数据并请求重发。

3.1 串口通信程序设计

协调器通过串口与数据通信器进行数据交互,所以在程序设计时需要对串口的波特率、数据位、奇偶校验、停止位以及数据流控制进行设置,实现数据传输。通过任务接口定时读写串口数据,查看协调器是否有数据,并将数据存入队列供界面显示、存储以及发送。串口设置界面如图4所示。

下面是串口设置的部分代码:

其中,getPortSettings()函数返回一个PortSettings型变量,包含了对波特率、数据位、停止位等的设置,getPortName()函数返回字符串型变量,用于串口号的设置。

[1][2]

只要相信,期待就会成真

基于ARM-Linux的无线气象数据通信系统的设计与实现

相关文章:

你感兴趣的文章:

标签云: