详解Linux2.6内核中基于platform机制的驱动模型

(本原创文章发表于Sailor_forever 的个人blog,未经本人许可,不得用于商业用途。任何个人、媒体、其他网站不得私自抄袭;网络媒体转载请注明出处,增加原文链接,否则属于侵权行为。如 有任何问题,请留言或者发邮件给sailing_9806#163.com)

http://blog.csdn.net/sailor_8318/archive/2010/01/29/5267698.aspx

【摘要】本文以Linux 2.6.25 内核为例,分析了基于platform总线的驱动模型。首先介绍了Platform总线的基本概念,接着介绍了platform device和platform driver的定义和加载过程,分析了其与基类device 和driver的派生关系及在此过程中面向对象的设计思想。最后以ARM S3C2440中I2C控制器为例介绍了基于platform总线的驱动开发流程。【关键字】platform_bus, platform_device, resource , platform_driver, file_operations目录1 何谓platform bus? 22 device和platform_device 33 device_register和platform_device_register 54 device_driver和platform driver 85 driver_register 和platform_driver_register 106 bus、device及driver三者之间的关系 177 哪些适用于plarform驱动? 188 基于platform总线的驱动开发流程 188.1 初始化platform_bus 198.2 定义platform_device 228.3 注册platform_device 228.4 定义platform_driver 288.5 注册platform_driver 298.6 操作设备 321 何谓platform bus?Linux系统中许多部分对设备是如何链接的并不感兴趣,但是他们需要知道哪些类型的设备是可以使用的。设备模型提供了一种机制来对设备进行分类,在更高的功能层面上描述这些设备,并使得这些设备对用户空间可见。因此从2.6内核开始引入了设备模型。总线是处理器和一个或多个设备之间的通道,在设备模型中, 所有的设备都通过总线相连。总线可以相互插入。设备模型展示了总线和它们所控制的设备之间的实际连接。Platform总线是2.6 kernel中最近引入的一种虚拟总线,主要用来管理CPU的片上资源,具有更好的移植性,因此在2.6 kernel中,很多驱动都用platform改写了。platform_bus_type的定义如下:http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L609609struct bus_type platform_bus_type = {610 .name = "platform",611 .dev_attrs = platform_dev_attrs,612 .match = platform_match,613 .uevent = platform_uevent,614 .suspend = platform_suspend,615 .suspend_late = platform_suspend_late,616 .resume_early = platform_resume_early,617 .resume = platform_resume,618};619EXPORT_SYMBOL_GPL(platform_bus_type);http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L55 55struct bus_type { 56 const char *name; 57 struct bus_attribute *bus_attrs; 58 struct device_attribute *dev_attrs; 59 struct driver_attribute *drv_attrs; 60 61 int (*match)(struct device *dev, struct device_driver *drv); 62 int (*uevent)(struct device *dev, struct kobj_uevent_env *env); 63 int (*probe)(struct device *dev); 64 int (*remove)(struct device *dev); 65 void (*shutdown)(struct device *dev); 66 67 int (*suspend)(struct device *dev, pm_message_t state); 68 int (*suspend_late)(struct device *dev, pm_message_t state); 69 int (*resume_early)(struct device *dev); 70 int (*resume)(struct device *dev); 71 72 struct bus_type_private *p; 73};总线名称是"platform",其只是bus_type的一种,定义了总线的属性,同时platform_bus_type还有相关操作方法,如挂起、中止、匹配及hotplug事件等。总线bus是联系driver和device的中间枢纽。Device通过所属的bus找到driver,由match操作方法进行匹配。Bus、driver及devices的连接关系2 device和platform_devicePlarform device会有一个名字用于driver binding(在注册driver的时候会查找driver的目标设备的bus位置,这个过程称为driver binding),另外IRQ以及地址空间等资源也要给出 。platform_device结构体用来描述设备的名称、资源信息等。该结构被定义在http://lxr.linux.no/#linux+v2.6.25/include/linux/platform_device.h#L16中,定义原型如下: 16struct platform_device { 17 const char * name; //定义平台设备的名称,此处设备的命名应和相应驱动程序命名一致 18 int id; 19 struct device dev; 20 u32 num_resources; 21 struct resource * resource; //定义平台设备的资源 22};在这个结构里封装了struct device及struct resource。可知:platform_device由device派生而来,是一种特殊的device。下面来看一下platform_device结构体中最重要的一个成员struct resource * resource。struct resource被定义在http://lxr.linux.no/#linux+v2.6.25/include/linux/ioport.h#L18中,定义原型如下: 14/* 15 * Resources are tree-like, allowing 16 * nesting etc.. 17 */ 18struct resource { 19 resource_size_t start; //定义资源的起始地址 20 resource_size_t end; //定义资源的结束地址 21 const char *name; //定义资源的名称 22 unsigned long flags; 定义资源的类型,比如MEM,IO,IRQ,DMA类型 23 struct resource *parent, *sibling, *child; 24};这个结构表示设备所拥有的资源,即I/O端口、I/O映射内存、中断及DMA等。这里的地址指的是物理地址。另外还需要注意platform_device中的device结构,它详细描述了设备的情况,其为所有设备的基类,定义如下:http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L422422struct device {423 struct klist klist_children;424 struct klist_node knode_parent; /* node in sibling list */425 struct klist_node knode_driver;426 struct klist_node knode_bus;427 struct device *parent;428429 struct kobject kobj;430 char bus_id[BUS_ID_SIZE]; /* position on parent bus */431 struct device_type *type;432 unsigned is_registered:1;433 unsigned uevent_suppress:1;434435 struct semaphore sem; /* semaphore to synchronize calls to436 * its driver.437 */438439 struct bus_type *bus; /* type of bus device is on */440 struct device_driver *driver; /* which driver has allocated this441 device */442 void *driver_data; /* data private to the driver */443 void *platform_data; /* Platform specific data, device444 core doesn’t touch it */445 struct dev_pm_info power;446447#ifdef CONFIG_NUMA448 int numa_node; /* NUMA node this device is close to */449#endif450 u64 *dma_mask; /* dma mask (if dma’able device) */451 u64 coherent_dma_mask;/* Like dma_mask, but for452 alloc_coherent mappings as453 not all hardware supports454 64 bit addresses for consistent455 allocations such descriptors. */456457 struct device_dma_parameters *dma_parms;458459 struct list_head dma_pools; /* dma pools (if dma’ble) */460461 struct dma_coherent_mem *dma_mem; /* internal for coherent mem462 override */463 /* arch specific additions */464 struct dev_archdata archdata;465466 spinlock_t devres_lock;467 struct list_head devres_head;468469 /* class_device migration path */470 struct list_head node;471 struct class *class;472 dev_t devt; /* dev_t, creates the sysfs "dev" */473 struct attribute_group **groups; /* optional groups */474475 void (*release)(struct device *dev);476};4773 device_register和platform_device_registerhttp://lxr.linux.no/#linux+v2.6.25/drivers/base/core.c#L881870/**871 * device_register – register a device with the system.872 * @dev: pointer to the device structure873 *874 * This happens in two clean steps – initialize the device875 * and add it to the system. The two steps can be called876 * separately, but this is the easiest and most common.877 * I.e. you should only call the two helpers separately if878 * have a clearly defined need to use and refcount the device879 * before it is added to the hierarchy.880 */881int device_register(struct device *dev)882{883 device_initialize(dev);884 return device_add(dev);885}初始化一个设备,然后加入到系统中。http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L325316/**317 * platform_device_register – add a platform-level device318 * @pdev: platform device we’re adding319 */320int platform_device_register(struct platform_device *pdev)321{322 device_initialize(&pdev->dev);323 return platform_device_add(pdev);324}325EXPORT_SYMBOL_GPL(platform_device_register);我们看到注册一个platform device分为了两部分,初始化这个platform_device,然后将此platform_device添加到platform总线中。输入参数platform_device可以是静态的全局设备。另外一种机制就是动态申请platform_device_alloc一个platform_device设备,然后通过platform_device_add_resources及platform_device_add_data等添加相关资源和属性。无论哪一种platform_device,最终都将通过platform_device_add这册到platform总线上。229/**230 * platform_device_add – add a platform device to device hierarchy231 * @pdev: platform device we’re adding232 *233 * This is part 2 of platform_device_register(), though may be called234 * separately _iff_ pdev was allocated by platform_device_alloc().235 */236int platform_device_add(struct platform_device *pdev)237{238 int i, ret = 0;239240 if (!pdev)241 return -EINVAL;242初始化设备的parent为platform_bus,初始化驱备的总线为platform_bus_type。243 if (!pdev->dev.parent)244 pdev->dev.parent = &platform_bus;245246 pdev->dev.bus = &platform_bus_type;247/*++++++++++++++The platform_device.dev.bus_id is the canonical name for the devices.It’s built from two components:* platform_device.name … which is also used to for driver matching.* platform_device.id … the device instance number, or else "-1"to indicate there’s only one.These are concatenated, so name/id "serial"/0 indicates bus_id "serial.0", and"serial/3" indicates bus_id "serial.3"; both would use the platform_drivernamed "serial". While "my_rtc"/-1 would be bus_id "my_rtc" (no instance id)and use the platform_driver called "my_rtc".++++++++++++++*/248 if (pdev->id != -1)249 snprintf(pdev->dev.bus_id, BUS_ID_SIZE, "%s.%d", pdev->name,250 pdev->id);251 else252 strlcpy(pdev->dev.bus_id, pdev->name, BUS_ID_SIZE);253设置设备struct device 的bus_id成员,留心这个地方,在以后还需要用到这个的。254 for (i = 0; i < pdev->num_resources; i++) {255 struct resource *p, *r = &pdev->resource[i];256257 if (r->name == NULL)258 r->name = pdev->dev.bus_id;259260 p = r->parent;261 if (!p) {262 if (r->flags & IORESOURCE_MEM)263 p = &iomem_resource;264 else if (r->flags & IORESOURCE_IO)265 p = &ioport_resource;266 }//resources分为两种IORESOURCE_MEM和IORESOURCE_IO//CPU对外设IO端口物理地址的编址方式有两种:I/O映射方式和内存映射方式267268 if (p && insert_resource(p, r)) {269 printk(KERN_ERR270 "%s: failed to claim resource %d/n",271 pdev->dev.bus_id, i);272 ret = -EBUSY;273 goto failed;274 }275 }276277 pr_debug("Registering platform device ‘%s’. Parent at %s/n",278 pdev->dev.bus_id, pdev->dev.parent->bus_id);279280 ret = device_add(&pdev->dev);281 if (ret == 0)282 return ret;283284 failed:285 while (–i >= 0)286 if (pdev->resource[i].flags & (IORESOURCE_MEM|IORESOURCE_IO))287 release_resource(&pdev->resource[i]);288 return ret;289}290EXPORT_SYMBOL_GPL(platform_device_add);由platform_device_register和platform_device_add的实现可知,device_register()和platform_device_register()都会首先初始化设备区别在于第二步:其实platform_device_add()包括device_add(),不过要先注册resources,然后将设备挂接到特定的platform总线。4 device_driver和platform driverPlatform device是一种device自己是不会做事情的,要有人为它做事情,那就是platform driver。platform driver遵循linux系统的driver model。对于device的discovery/enumerate都不是driver自己完成的而是由由系统的driver注册机制完成。driver编写人员只要将注册必须的数据结构初始化并调用注册driver的kernel API就可以了。接下来来看platform_driver结构体的原型定义,在http://lxr.linux.no/#linux+v2.6.25/include/linux/platform_device.h#L48中,代码如下:48 struct platform_driver { 49 int (*probe)(struct platform_device *); 50 int (*remove)(struct platform_device *); 51 void (*shutdown)(struct platform_device *); 52 int (*suspend)(struct platform_device *, pm_message_t state); 53 int (*suspend_late)(struct platform_device *, pm_message_t state); 54 int (*resume_early)(struct platform_device *); 55 int (*resume)(struct platform_device *); 56 struct device_driver driver; 57};可见,它包含了设备操作的几个功能函数,同时包含了一个device_driver结构,说明device_driver是platform_driver的基类。驱动程序中需要初始化这个变量。下面看一下这个变量的定义,位于http://lxr.linux.no/#linux+v2.6.25/include/linux/device.h#L121中:121struct device_driver {122 const char *name;123 struct bus_type *bus;124125 struct module *owner;126 const char *mod_name; /* used for built-in modules */127128 int (*probe) (struct device *dev);129 int (*remove) (struct device *dev);130 void (*shutdown) (struct device *dev);131 int (*suspend) (struct device *dev, pm_message_t state);132 int (*resume) (struct device *dev);133 struct attribute_group **groups;134135 struct driver_private *p;136};device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的driver都是基于device_driver派生而来的,具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。需要注意这两个变量:name和owner。其作用主要是为了和相关的platform_device关联起来,owner的作用是说明模块的所有者,驱动程序中一般初始化为THIS_MODULE。device_driver结构中也有一个name变量。platform_driver从字面上来看就知道是设备驱动。设备驱动是为谁服务的呢?当然是设备了。内核正是通过这个一致性来为驱动程序找到资源,即 platform_device中的resource。5 driver_register 和platform_driver_register内核提供的platform_driver结构体的注册函数为platform_driver_register(),其原型定义在http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L458文件中,具体实现代码如下:439/**440 * platform_driver_register441 * @drv: platform driver structure442 */443int platform_driver_register(struct platform_driver *drv)444{445 drv->driver.bus = &platform_bus_type; /*设置成platform_bus_type这个很重要,因为driver和device是通过bus联系在一起的,具体在本例中是通过 platform_bus_type中注册的回调例程和属性来是实现的, driver与device的匹配就是通过 platform_bus_type注册的回调例程platform_match ()来完成的。*/446 if (drv->probe)447 drv->driver.probe = platform_drv_probe;//在really_probe函数中,回调了platform_drv_probe函数448 if (drv->remove)449 drv->driver.remove = platform_drv_remove;450 if (drv->shutdown)451 drv->driver.shutdown = platform_drv_shutdown;452 if (drv->suspend)453 drv->driver.suspend = platform_drv_suspend;454 if (drv->resume)455 drv->driver.resume = platform_drv_resume;456 return driver_register(&drv->driver);457}458EXPORT_SYMBOL_GPL(platform_driver_register);不要被上面的platform_drv_XXX吓倒了,它们其实很简单,就是将struct device转换为struct platform_device和struct platform_driver,然后调用platform_driver中的相应接口函数。那为什么不直接调用platform_drv_XXX等接口呢?这就是Linux内核中面向对象的设计思想。device_driver提供了一些操作接口,但其并没有实现,相当于一些虚函数,由派生类platform_driver进行重载,无论何种类型的driver都是基于device_driver派生而来的,device_driver中具体的各种操作都是基于统一的基类接口的,这样就实现了面向对象的设计。在文件http://lxr.linux.no/#linux+v2.6.25/drivers/base/driver.c#L234中,实现了driver_register()函数。209/**210 * driver_register – register driver with bus211 * @drv: driver to register212 *213 * We pass off most of the work to the bus_add_driver() call,214 * since most of the things we have to do deal with the bus215 * structures.216 */217int driver_register(struct device_driver *drv)218{219 int ret;220//如果总线的方法和设备自己的方法同时存在,将打印告警信息,对于platform bus,其没有probe等接口221 if ((drv->bus->probe && drv->probe) ||222 (drv->bus->remove && drv->remove) ||223 (drv->bus->shutdown && drv->shutdown))224 printk(KERN_WARNING "Driver ‘%s’ needs updating – please use "225 "bus_type methods/n", drv->name);226 ret = bus_add_driver(drv);227 if (ret)228 return ret;229 ret = driver_add_groups(drv, drv->groups);230 if (ret)231 bus_remove_driver(drv);232 return ret;233}234EXPORT_SYMBOL_GPL(driver_register);226 其主要将驱动挂接到总线上,通过总线来驱动设备。644/**645 * bus_add_driver – Add a driver to the bus.646 * @drv: driver.647 */648int bus_add_driver(struct device_driver *drv)649{650 struct bus_type *bus;651 struct driver_private *priv;652 int error = 0;653654 bus = bus_get(drv->bus);655 if (!bus)656 return -EINVAL;657658 pr_debug("bus: ‘%s’: add driver %s/n", bus->name, drv->name);659660 priv = kzalloc(sizeof(*priv), GFP_KERNEL);661 if (!priv) {662 error = -ENOMEM;663 goto out_put_bus;664 }665 klist_init(&priv->klist_devices, NULL, NULL);666 priv->driver = drv;667 drv->p = priv;668 priv->kobj.kset = bus->p->drivers_kset;669 error = kobject_init_and_add(&priv->kobj, &driver_ktype, NULL,670 "%s", drv->name);671 if (error)672 goto out_unregister;673674 if (drv->bus->p->drivers_autoprobe) {675 error = driver_attach(drv);676 if (error)677 goto out_unregister;678 }679 klist_add_tail(&priv->knode_bus, &bus->p->klist_drivers);680 module_add_driver(drv->owner, drv);681682 error = driver_create_file(drv, &driver_attr_uevent); //在sys文件系统中为drv创建目录。683 if (error) {684 printk(KERN_ERR "%s: uevent attr (%s) failed/n",685 __FUNCTION__, drv->name);686 }687 error = driver_add_attrs(bus, drv);688 if (error) {689 /* How the hell do we get out of this pickle? Give up */690 printk(KERN_ERR "%s: driver_add_attrs(%s) failed/n",691 __FUNCTION__, drv->name);692 }693 error = add_bind_files(drv);694 if (error) {695 /* Ditto */696 printk(KERN_ERR "%s: add_bind_files(%s) failed/n",697 __FUNCTION__, drv->name);698 }699700 kobject_uevent(&priv->kobj, KOBJ_ADD);701 return error;702out_unregister:703 kobject_put(&priv->kobj);704out_put_bus:705 bus_put(bus);706 return error;707}如果总线上的driver是自动probe的话,则将该总线上的driver和device绑定起来。http://lxr.linux.no/#linux+v2.6.25/drivers/base/dd.c#L285272/**273 * driver_attach – try to bind driver to devices.274 * @drv: driver.275 *276 * Walk the list of devices that the bus has on it and try to277 * match the driver with each one. If driver_probe_device()278 * returns 0 and the @dev->driver is set, we’ve found a279 * compatible pair.280 */281int driver_attach(struct device_driver *drv)282{283 return bus_for_each_dev(drv->bus, NULL, drv, __driver_attach);284}285EXPORT_SYMBOL_GPL(driver_attach);扫描该总线上的每一个设备,将当前driver和总线上的设备进行match,如果匹配成功,则将设备和driver绑定起来。246static int __driver_attach(struct device *dev, void *data)247{248 struct device_driver *drv = data;249250 /*251 * Lock device and try to bind to it. We drop the error252 * here and always return 0, because we need to keep trying253 * to bind to devices and some drivers will return an error254 * simply if it didn’t support the device.255 *256 * driver_probe_device() will spit a warning if there257 * is an error.258 */259260 if (dev->parent) /* Needed for USB */261 down(&dev->parent->sem);262 down(&dev->sem);263 if (!dev->driver)264 driver_probe_device(drv, dev);265 up(&dev->sem);266 if (dev->parent)267 up(&dev->parent->sem);268269 return 0;270}263,如果该设备尚没有匹配的driver,则尝试匹配。http://lxr.linux.no/#linux+v2.6.25/drivers/base/dd.c#L187170/**171 * driver_probe_device – attempt to bind device & driver together172 * @drv: driver to bind a device to173 * @dev: device to try to bind to the driver174 *175 * First, we call the bus’s match function, if one present, which should176 * compare the device IDs the driver supports with the device IDs of the177 * device. Note we don’t do this ourselves because we don’t know the178 * format of the ID structures, nor what is to be considered a match and179 * what is not.180 *181 * This function returns 1 if a match is found, -ENODEV if the device is182 * not registered, and 0 otherwise.183 *184 * This function must be called with @dev->sem held. When called for a185 * USB interface, @dev->parent->sem must be held as well.186 */187int driver_probe_device(struct device_driver *drv, struct device *dev)188{189 int ret = 0;190191 if (!device_is_registered(dev))192 return -ENODEV;193 if (drv->bus->match && !drv->bus->match(dev, drv))194 goto done;195196 pr_debug("bus: ‘%s’: %s: matched device %s with driver %s/n",197 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);198199 ret = really_probe(dev, drv);200201done:202 return ret;203}193,如果该总线上的设备需要进行匹配,则验证是否匹配。对于platform总线,其匹配过程如下:http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L555542/**543 * platform_match – bind platform device to platform driver.544 * @dev: device.545 * @drv: driver.546 *547 * Platform device IDs are assumed to be encoded like this:548 * "<name><instance>", where <name> is a short description of the type of549 * device, like "pci" or "floppy", and <instance> is the enumerated550 * instance of the device, like ‘0’ or ’42’. Driver IDs are simply551 * "<name>". So, extract the <name> from the platform_device structure,552 * and compare it against the name of the driver. Return whether they match553 * or not.554 */555static int platform_match(struct device *dev, struct device_driver *drv)556{557 struct platform_device *pdev;558559 pdev = container_of(dev, struct platform_device, dev);560 return (strncmp(pdev->name, drv->name, BUS_ID_SIZE) == 0);561}560,简单的进行字符串匹配,这也是我们强调platform_device和platform_driver中的name属性需要一致的原因。匹配成功后,则调用probe接口。http://lxr.linux.no/#linux+v2.6.25/drivers/base/dd.c#L101 98static atomic_t probe_count = ATOMIC_INIT(0); 99static DECLARE_WAIT_QUEUE_HEAD(probe_waitqueue);100101static int really_probe(struct device *dev, struct device_driver *drv)102{103 int ret = 0;104105 atomic_inc(&probe_count);106 pr_debug("bus: ‘%s’: %s: probing driver %s with device %s/n",107 drv->bus->name, __FUNCTION__, drv->name, dev->bus_id);108 WARN_ON(!list_empty(&dev->devres_head));109110 dev->driver = drv;111 if (driver_sysfs_add(dev)) {112 printk(KERN_ERR "%s: driver_sysfs_add(%s) failed/n",113 __FUNCTION__, dev->bus_id);114 goto probe_failed;115 }116117 if (dev->bus->probe) {118 ret = dev->bus->probe(dev);119 if (ret)120 goto probe_failed;121 } else if (drv->probe) {122 ret = drv->probe(dev);123 if (ret)124 goto probe_failed;125 }126127 driver_bound(dev);128 ret = 1;129 pr_debug("bus: ‘%s’: %s: bound device %s to driver %s/n",130 drv->bus->name, __FUNCTION__, dev->bus_id, drv->name);131 goto done;132133probe_failed:134 devres_release_all(dev);135 driver_sysfs_remove(dev);136 dev->driver = NULL;137138 if (ret != -ENODEV && ret != -ENXIO) {139 /* driver matched but the probe failed */140 printk(KERN_WARNING141 "%s: probe of %s failed with error %d/n",142 drv->name, dev->bus_id, ret);143 }144 /*145 * Ignore errors returned by ->probe so that the next driver can try146 * its luck.147 */148 ret = 0;149done:150 atomic_dec(&probe_count);151 wake_up(&probe_waitqueue);152 return ret;153}154如果bus和driver同时具备probe方法,则优先调用总线的probe函数。否则调用device_driver的probe函数,此probe函数是经过各种类型的driver重载的函数,这就实现了利用基类的统一方法来实现不同的功能。对于platform_driver来说,其就是:http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L394394static int platform_drv_probe(struct device *_dev)395{396 struct platform_driver *drv = to_platform_driver(_dev->driver);397 struct platform_device *dev = to_platform_device(_dev);398399 return drv->probe(dev);400}然后调用特定platform_driver所定义的操作方法,这个是在定义某个platform_driver时静态指定的操作接口。至此,platform_driver成功挂接到platform bus上了,并与特定的设备实现了绑定,并对设备进行了probe处理。6 bus、device及driver三者之间的关系在数据结构设计上,总线、设备及驱动三者相互关联。platform device包含device,根据device可以获得相应的bus及driver。设备添加到总线上后形成一个双向循环链表,根据总线可以获得其上挂接的所有device,进而获得了 platform device。根据device也可以获得驱动该总线上所有设备的相关driver。platform driver包含driver,根据driver可以获得相应的bus,进而获得bus上所有的device,进一步获得platform device,根据name对driver与platform device进行匹配,匹配成功后将device与相应的driver关联起来,即实现了platform device和platform driver的关联。匹配成功后调用driver的probe进而调用platform driver的probe,在probe里实现驱动特定的功能。7 哪些适用于plarform驱动?platform机制将设备本身的资源注册进内核,由内核统一管理,在驱动程序中使用这些资源时通过platform device提供的标准接口进行申请并使用。这样提高了驱动和资源管理的独立性,这样拥有更好的可移植性。platform机制的本身使用并不复杂,由两部分组成:platform_device和platfrom_driver。Platform driver通过platform bus获取platform_device。通常情况下只要和内核本身运行依赖性不大的外围设备,相对独立的,拥有各自独立的资源(地址总线和IRQs),都可以用 platform_driver来管理,而timer,irq等小系统之内的设备则最好不用platfrom_driver机制。platform_device最大的特定是CPU直接寻址设备的寄存器空间,即使对于其他总线设备,设备本身的寄存器无法通过CPU总线访问,但总线的controller仍然需要通过platform bus来管理。总之,platfrom_driver的根本目的是为了统一管理系统的外设资源,为驱动程序提供统一的接口来访问系统资源,将驱动和资源分离,提高程序的可移植性。8 基于platform总线的驱动开发流程基于Platform总线的驱动开发流程如下:? 定义初始化platform bus? 定义各种platform devices? 注册各种platform devices? 定义相关platform driver? 注册相关platform driver? 操作相关设备图 platform机制开发驱动流程以S3C24xx平台为例,来简单讲述下platform驱动的实现流程。8.1 初始化platform_busPlatform总线的初始化是在platform_bus_init()完成的,代码如下:http://lxr.linux.no/#linux+v2.6.25/drivers/base/platform.c#L621 26struct device platform_bus = { 27 .bus_id = "platform", 28}; 29EXPORT_SYMBOL_GPL(platform_bus);621int __init platform_bus_init(void)622{623 int error;624625 error = device_register(&platform_bus);626 if (error)627 return error;628 error = bus_register(&platform_bus_type);629 if (error)630 device_unregister(&platform_bus);631 return error;632}该函数创建了一个名为 “platform”的设备,后续platform的设备都会以此为parent。在sysfs中表示为:所有platform类型的设备都会添加在 platform_bus所代表的目录下,即 /sys/devices/platform下面。-sh-3.1# ls /sys/devices/platform/Fixed MDIO bus.0 fsl-i2c.0 serial8250fsl-ehci.0 fsl-i2c.1 serial8250.0fsl-gianfar.0 mpc83xx_spi.0 ueventfsl-gianfar.1 mpc83xx_wdt.0fsl-gianfar_mdio.-5 power-sh-3.1# ls /sys/block/ class/ firmware/ kernel/ power/bus/ devices/ fs/ module/-sh-3.1# ls /sys/bus/i2c/ of_platform/ pci_express/ scsi/ usb/mdio_bus/ pci/ platform/ spi/-sh-3.1# ls /sys/bus/i2c/devices/ drivers_autoprobe ueventdrivers/ drivers_probe-sh-3.1# ls /sys/bus/platform/devices/Fixed MDIO bus.0/ fsl-gianfar_mdio.-5/ mpc83xx_wdt.0/fsl-ehci.0/ fsl-i2c.0/ serial8250/fsl-gianfar.0/ fsl-i2c.1/ serial8250.0/fsl-gianfar.1/ mpc83xx_spi.0/-sh-3.1# ls /sys/bus/platform/driversdrivers/ drivers_autoprobe drivers_probe-sh-3.1# ls /sys/bus/platform/drivers/fsl-ehci/ fsl-gianfar_mdio/ mpc83xx_spi/ serial8250/fsl-gianfar/ fsl-i2c/ mpc83xx_wdt/platform_bus必须在系统注册任何platform driver和platform device之前初始化,那么这是如何实现的呢?http://lxr.linux.no/#linux+v2.6.25/drivers/base/init.c 14/** 15 * driver_init – initialize driver model. 16 * 17 * Call the driver model init functions to initialize their 18 * subsystems. Called early from init/main.c. 19 */ 20void __init driver_init(void) 21{ 22 /* These are the core pieces */ 23 devices_init(); 24 buses_init(); 25 classes_init(); 26 firmware_init(); 27 hypervisor_init(); 28 29 /* These are also core pieces, but must come after the 30 * core core pieces. 31 */ 32 platform_bus_init(); 33 system_bus_init(); 34 cpu_dev_init(); 35 memory_dev_init(); 36}init/main.cstart_kernel 》 rest_init 》 kernel_init 》 do_basic_setup》driver_init 》platform_bus_inithttp://lxr.linux.no/#linux+v2.6.25/drivers/base/init.c#L32724/*725 * Ok, the machine is now initialized. None of the devices726 * have been touched yet, but the CPU subsystem is up and727 * running, and memory and process management works.728 *729 * Now we can finally start doing some real work..730 */731static void __init do_basic_setup(void)732{733 /* drivers will send hotplug events */734 init_workqueues();735 usermodehelper_init();736 driver_init();737 init_irq_proc();738 do_initcalls();739}platform driver和platform device的初始化是在do_initcalls中进行的。8.2 定义platform_devicehttp://lxr.linux.no/#linux+v2.6.25/arch/arm/plat-s3c24xx/devs.c#L276中定义了系统的资源,是一个高度可移植的文件,大部分板级资源都在这里集中定义。274/* I2C */275276static struct resource s3c_i2c_resource[] = {277 [0] = {278 .start = S3C24XX_PA_IIC,279 .end = S3C24XX_PA_IIC + S3C24XX_SZ_IIC – 1,280 .flags = IORESOURCE_MEM,281 },282 [1] = {283 .start = IRQ_IIC,284 .end = IRQ_IIC,285 .flags = IORESOURCE_IRQ,286 }287288};289290struct platform_device s3c_device_i2c = {291 .name = "s3c2410-i2c",292 .id = -1,293 .num_resources = ARRAY_SIZE(s3c_i2c_resource),294 .resource = s3c_i2c_resource,295};296297EXPORT_SYMBOL(s3c_device_i2c);设备名称为s3c2410-i2c,“-1”只有一个i2c设备,两个资源s3c_i2c_resource,分别为i2c控制器的寄存器空间和中断信息。8.3 注册platform_device定义了platform_device后,需要添加到系统中,就可以调用函数platform_add_devices。http://lxr.linux.no/#linux+v2.6.25/arch/arm/mach-s3c2440/mach-smdk2440.csmdk2440_devices将系统资源组织起来,统一注册进内核。151static struct platform_device *smdk2440_devices[] __initdata = {152 &s3c_device_usb,153 &s3c_device_lcd,154 &s3c_device_wdt,155 &s3c_device_i2c,156 &s3c_device_iis,157};166static void __init smdk2440_machine_init(void)167{168 s3c24xx_fb_set_platdata(&smdk2440_fb_info);169170 platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));171 smdk_machine_init();172}173174MACHINE_START(S3C2440, "SMDK2440")175 /* Maintainer: Ben Dooks <ben@fluff.org> */176 .phys_io = S3C2410_PA_UART,177 .io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,178 .boot_params = S3C2410_SDRAM_PA + 0x100,179180 .init_irq = s3c24xx_init_irq,181 .map_io = smdk2440_map_io,182 .init_machine = smdk2440_machine_init,183 .timer = &s3c24xx_timer,184MACHINE_END170 platform_add_devices(smdk2440_devices, ARRAY_SIZE(smdk2440_devices));将系统所有资源注册进系统,在此之前platform bus需要初始化成功,否则无法将platform devices挂接到platform bus上。为了保证platform drive初始化时,相关platform资源已经注册进系统,smdk2440_machine_init需要很早执行,而其作为平台初始化init_machine 时,将优先于系统所有驱动的初始化。其调用顺序如下:start_kernel》setup_arch》init_machine》arch_initcall(customize_machine)http://lxr.linux.no/#linux+v2.6.25/arch/arm/kernel/setup.c#L788786arch_initcall(customize_machine);787788void __init setup_arch(char **cmdline_p)789{790 struct tag *tags = (struct tag *)&init_tags;791 struct machine_desc *mdesc;792 char *from = default_command_line;793794 setup_processor();795 mdesc = setup_machine(machine_arch_type);//根据machine id获得移植时定义的machine desc结构796 machine_name = mdesc->name;797798 if (mdesc->soft_reboot)799 reboot_setup("s");800801 if (__atags_pointer)802 tags = phys_to_virt(__atags_pointer);803 else if (mdesc->boot_params)804 tags = phys_to_virt(mdesc->boot_params);805806 /*807 * If we have the old style parameters, convert them to808 * a tag list.809 */810 if (tags->hdr.tag != ATAG_CORE)811 convert_to_tag_list(tags);812 if (tags->hdr.tag != ATAG_CORE)813 tags = (struct tag *)&init_tags;814815 if (mdesc->fixup)816 mdesc->fixup(mdesc, tags, &from, &meminfo);817818 if (tags->hdr.tag == ATAG_CORE) {819 if (meminfo.nr_banks != 0)820 squash_mem_tags(tags);821 save_atags(tags);822 parse_tags(tags);823 }824825 init_mm.start_code = (unsigned long) &_text;826 init_mm.end_code = (unsigned long) &_etext;827 init_mm.end_data = (unsigned long) &_edata;828 init_mm.brk = (unsigned long) &_end;829830 memcpy(boot_command_line, from, COMMAND_LINE_SIZE);831 boot_command_line[COMMAND_LINE_SIZE-1] = ‘/0′;832 parse_cmdline(cmdline_p, from);833 paging_init(&meminfo, mdesc);834 request_standard_resources(&meminfo, mdesc);835836#ifdef CONFIG_SMP837 smp_init_cpus();838#endif839840 cpu_init();841842 /*843 * Set up various architecture-specific pointers844 */845 init_arch_irq = mdesc->init_irq;846 system_timer = mdesc->timer;847 init_machine = mdesc->init_machine;//对init_machine指针赋值848849#ifdef CONFIG_VT850#if defined(CONFIG_VGA_CONSOLE)851 conswitchp = &vga_con;852#elif defined(CONFIG_DUMMY_CONSOLE)853 conswitchp = &dummy_con;854#endif855#endif856}777static void (*init_machine)(void) __initdata;778779static int __init customize_machine(void)780{781 /* customizes platform devices, or adds new ones */782 if (init_machine)783 init_machine();784 return 0;785}786arch_initcall(customize_machine);arch_initcall将customize_machine放在特定的段中,系统将在某个地方运行所有的arch_initcall修饰的函数。http://lxr.linux.no/#linux+v2.6.25/include/linux/init.h#L182152#ifndef MODULE //非可加载模块,即编译链接进内核的代码153154#ifndef __ASSEMBLY__155156/* initcalls are now grouped by functionality into separate157 * subsections. Ordering inside the subsections is determined158 * by link order.159 * For backwards compatibility, initcall() puts the call in160 * the device init subsection.161 *162 * The `id’ arg to __define_initcall() is needed so that multiple initcalls163 * can point at the same handler without causing duplicate-symbol build errors.164 */165166#define __define_initcall(level,fn,id) /167 static initcall_t __initcall_##fn##id __used /168 __attribute__((__section__(".initcall" level ".init"))) = fn169170/*171 * A "pure" initcall has no dependencies on anything else, and purely172 * initializes variables that couldn’t be statically initialized.173 *174 * This only exists for built-in code, not for modules.175 */176#define pure_initcall(fn) __define_initcall("0",fn,0)177178#define core_initcall(fn) __define_initcall("1",fn,1)179#define core_initcall_sync(fn) __define_initcall("1s",fn,1s)180#define postcore_initcall(fn) __define_initcall("2",fn,2)181#define postcore_initcall_sync(fn) __define_initcall("2s",fn,2s)182#define arch_initcall(fn) __define_initcall("3",fn,3)183#define arch_initcall_sync(fn) __define_initcall("3s",fn,3s)184#define subsys_initcall(fn) __define_initcall("4",fn,4)185#define subsys_initcall_sync(fn) __define_initcall("4s",fn,4s)186#define fs_initcall(fn) __define_initcall("5",fn,5)187#define fs_initcall_sync(fn) __define_initcall("5s",fn,5s)188#define rootfs_initcall(fn) __define_initcall("rootfs",fn,rootfs)189#define device_initcall(fn) __define_initcall("6",fn,6)190#define device_initcall_sync(fn) __define_initcall("6s",fn,6s)191#define late_initcall(fn) __define_initcall("7",fn,7)192#define late_initcall_sync(fn) __define_initcall("7s",fn,7s)193194#define __initcall(fn) device_initcall(fn)195196#define __exitcall(fn) /197 static exitcall_t __exitcall_##fn __exit_call = fn198。。。。。。。。。239#endif /* __ASSEMBLY__ */240241/**242 * module_init() – driver initialization entry point243 * @x: function to be run at kernel boot time or module insertion244 *245 * module_init() will either be called during do_initcalls() (if246 * builtin) or at module insertion time (if a module). There can only247 * be one per module.248 */249#define module_init(x) __initcall(x);250251/**252 * module_exit() – driver exit entry point253 * @x: function to be run when driver is removed254 *255 * module_exit() will wrap the driver clean-up code256 * with cleanup_module() when used with rmmod when257 * the driver is a module. If the driver is statically258 * compiled into the kernel, module_exit() has no effect.259 * There can only be one per module.260 */261#define module_exit(x) __exitcall(x);262263#else /* MODULE */各种xx_core_initcall被定义到了不同的分级的段中所以arch_initcall == __initcall_fn3 它将被链接器放于section .initcall3.init. 中module_init()==__initcall(fn)==device_initcall(fn)== __initcall_fn6各个段的优先级由链接脚本定义http://lxr.linux.no/#linux+v2.6.25/include/asm-generic/vmlinux.lds.h#L328#define INITCALLS / *(.initcall0.init) / *(.initcall0s.init) / *(.initcall1.init) / *(.initcall1s.init) / *(.initcall2.init) / *(.initcall2s.init) / *(.initcall3.init) / *(.initcall3s.init) / *(.initcall4.init) / *(.initcall4s.init) / *(.initcall5.init) / *(.initcall5s.init) /*(.initcallrootfs.init) / *(.initcall6.init) / *(.initcall6s.init) / *(.initcall7.init) / *(.initcall7s.init)这个__initcall_start是在文件arch/xxx/kernel/vmlinux.lds.S定义的:__initcall_start = .; INITCALLS __initcall_end = .;http://lxr.linux.no/#linux+v2.6.25/init/main.c#L664664static void __init do_initcalls(void)665{666 initcall_t *call;667 int count = preempt_count();668669 for (call = __initcall_start; call < __initcall_end; call++) {.。。。。682683 result = (*call)();684。。。 }720 /* Make sure there is no pending stuff from the initcall sequence */721 flush_scheduled_work();722}因此__initcall_fnx,数字越小,越先被调用,故arch_initcall优先于module_init所修饰的函数。arch_initcall修饰的函数的调用顺序如下:start_kernel 》 rest_init(在setup_arch之后) 》 kernel_init 》 do_basic_setup》do_initcalls(在driver_init()之后) ,因为platform_bus_init在此之前已经初始化完毕了,便可将设备挂接到总线上了。8.4 定义platform_driverPlatform bus和设备都定义好了后,需要定义一个platform driver用来驱动此设备。对于设备来说:290struct platform_device s3c_device_i2c = {291 .name = "s3c2410-i2c",292 .id = -1,293 .num_resources = ARRAY_SIZE(s3c_i2c_resource),294 .resource = s3c_i2c_resource,295};296297EXPORT_SYMBOL(s3c_device_i2c);根据platform总线上device和driver的匹配规则可知,I2C 的platform driver的名字是s3c2410-i2c。http://lxr.linux.no/#linux+v2.6.25/drivers/i2c/busses/i2c-s3c2410.c#L1903/* device driver for platform bus bits */904905static struct platform_driver s3c2410_i2c_driver = {906 .probe = s3c24xx_i2c_probe,907 .remove = s3c24xx_i2c_remove,908 .resume = s3c24xx_i2c_resume,909 .driver = {910 .owner = THIS_MODULE,911 .name = "s3c2410-i2c",912 },913};8.5 注册platform_driverhttp://lxr.linux.no/#linux+v2.6.25/drivers/i2c/busses/i2c-s3c2410.c#L1925static int __init i2c_adap_s3c_init(void)926{927 int ret;928929 ret = platform_driver_register(&s3c2410_i2c_driver);930 if (ret == 0) {931 ret = platform_driver_register(&s3c2440_i2c_driver);932 if (ret)933 platform_driver_unregister(&s3c2410_i2c_driver);934 }935936 return ret;937}938945module_init(i2c_adap_s3c_init);946module_exit(i2c_adap_s3c_exit);在i2c_adap_s3c_init中注册s3c2410_i2c_driver,那么i2c_adap_s3c_init何时执行的呢?module_init(i2c_adap_s3c_init)表明其存放在initcall段,调用顺序如下:init/main.cstart_kernel 》 rest_init 》 kernel_init 》 do_basic_setup》do_initcalls,因为platform_bus_init在此之前已经初始化完毕了,且设备已经注册到内核中了,驱动将和内核绑定,并最终调用s3c24xx_i2c_probe。748/* s3c24xx_i2c_probe749 *750 * called by the bus driver when a suitable device is found751*/752753static int s3c24xx_i2c_probe(struct platform_device *pdev)754{755 struct s3c24xx_i2c *i2c = &s3c24xx_i2c;756 struct resource *res;757 int ret;758759 /* find the clock and enable it */760761 i2c->dev = &pdev->dev;762 i2c->clk = clk_get(&pdev->dev, "i2c");763 if (IS_ERR(i2c->clk)) {764 dev_err(&pdev->dev, "cannot get clock/n");765 ret = -ENOENT;766 goto err_noclk;767 }768769 dev_dbg(&pdev->dev, "clock source %p/n", i2c->clk);770771 clk_enable(i2c->clk);772773 /* map the registers */774775 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);776 if (res == NULL) {777 dev_err(&pdev->dev, "cannot find IO resource/n");778 ret = -ENOENT;779 goto err_clk;780 }781782 i2c->ioarea = request_mem_region(res->start, (res->end-res->start)+1,783 pdev->name);784785 if (i2c->ioarea == NULL) {786 dev_err(&pdev->dev, "cannot request IO/n");787 ret = -ENXIO;788 goto err_clk;789 }790791 i2c->regs = ioremap(res->start, (res->end-res->start)+1);792793 if (i2c->regs == NULL) {794 dev_err(&pdev->dev, "cannot map IO/n");795 ret = -ENXIO;796 goto err_ioarea;797 }798799 dev_dbg(&pdev->dev, "registers %p (%p, %p)/n", i2c->regs, i2c->ioarea, res);800801 /* setup info block for the i2c core */802803 i2c->adap.algo_data = i2c;804 i2c->adap.dev.parent = &pdev->dev;805806 /* initialise the i2c controller */807808 ret = s3c24xx_i2c_init(i2c);809 if (ret != 0)810 goto err_iomap;811812 /* find the IRQ for this unit (note, this relies on the init call to813 * ensure no current IRQs pending814 */815816 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);817 if (res == NULL) {818 dev_err(&pdev->dev, "cannot find IRQ/n");819 ret = -ENOENT;820 goto err_iomap;821 }822823 ret = request_irq(res->start, s3c24xx_i2c_irq, IRQF_DISABLED,824 pdev->name, i2c);825826 if (ret != 0) {827 dev_err(&pdev->dev, "cannot claim IRQ/n");828 goto err_iomap;829 }830831 i2c->irq = res;832833 dev_dbg(&pdev->dev, "irq resource %p (%lu)/n", res,834 (unsigned long)res->start);835836 ret = i2c_add_adapter(&i2c->adap);837 if (ret < 0) {838 dev_err(&pdev->dev, "failed to add bus to i2c core/n");839 goto err_irq;840 }841842 platform_set_drvdata(pdev, i2c);843844 dev_info(&pdev->dev, "%s: S3C I2C adapter/n", i2c->adap.dev.bus_id);845 return 0;846847 err_irq:848 free_irq(i2c->irq->start, i2c);849850 err_iomap:851 iounmap(i2c->regs);852853 err_ioarea:854 release_resource(i2c->ioarea);855 kfree(i2c->ioarea);856857 err_clk:858 clk_disable(i2c->clk);859 clk_put(i2c->clk);860861 err_noclk:862 return ret;863}当进入probe函数后,需要获取设备的资源信息,常用获取资源的函数主要是:struct resource * platform_get_resource(struct platform_device *dev, unsigned int type, unsigned int num);根据参数type所指定类型,例如IORESOURCE_MEM,来获取指定的资源。struct int platform_get_irq(struct platform_device *dev, unsigned int num);获取资源中的中断号。struct resource * platform_get_resource_byname(struct platform_device *dev, unsigned int type, char *name);根据参数name所指定的名称,来获取指定的资源。int platform_get_irq_byname(struct platform_device *dev, char *name);根据参数name所指定的名称,来获取资源中的中断号。此probe函数获取物理IO空间,通过request_mem_region和ioremap等操作物理地址转换成内核中的虚拟地址,初始化I2C控制器,通过platform_get_irq或platform_get_resource得到设备的中断号以后,就可以调用request_irq函数来向系统注册中断,并将此I2C控制器添加到系统中。8.6 操作设备进行了platform_device_register 和platform_driver_register后,驱动的相应信息就出现在sys目录的相应文件夹下,然后,我们该如何调用设备呢??怎么对设备进行打开读写等操作呢???Platform总线只是为了方便管理挂接在CPU总线上的设备,与用户空间的交互,如读写还是需要利用file_operations。当然如果此platform设备无需和用户空间交互,则无需file_operations实例。对于I2C总线来说,其file_operations如下:http://lxr.linux.no/#linux+v2.6.25/drivers/i2c/i2c-core.c#L461478static const struct file_operations i2cdev_fops = {479 .owner = THIS_MODULE,480 .llseek = no_llseek,481 .read = i2cdev_read,482 .write = i2cdev_write,483 .ioctl = i2cdev_ioctl,484 .open = i2cdev_open,485 .release = i2cdev_release,486};其和platform bus的区别在于,platform bus提供机制访问I2C 控制器本身的资源,而I2C总线提供访问I2C 控制器上挂接的I2C设备的机制。

另有接合I2C讲接设备、驱动、platform总线的文章:http://blog.csdn.net/lycheng2004/article/details/2155965

世界上那些最容易的事情中,拖延时间最不费力。

详解Linux2.6内核中基于platform机制的驱动模型

相关文章:

你感兴趣的文章:

标签云: