关于Linux下串口通信的一点心得

这几天,由于长春门检系统项目的需要,涉及到了读卡器信息的串口读取,所以在Linux下串口信息的读取有了一点心得体会。

1.打开串口

与其他的关于设备编程的方法一样,在Linux下,操作、控制串口也是通过操作起设备文件进行的。在Linux下,串口的设备文件是/dev/ttyS0或/dev/ttyS1等。因此要读写串口,我们首先要打开串口:

char *dev= "/dev/ttyS0"; //串口1

intfd = open( dev, O_RDWR );

//| O_NOCTTY | O_NDELAY

if (-1 == fd)

{

perror("Can’t Open Serial Port");

return -1;

}

else

return fd;

2.设置串口速度

打开串口成功后,我们就可以对其进行读写了。首先要设置串口的波特率:

int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,

B38400, B19200, B9600, B4800, B2400, B1200, B300, };

int name_arr[] = {38400,19200,9600,4800,2400,1200,300, 38400,

19200,9600, 4800, 2400, 1200,300, };

void set_speed(int fd, int speed){

inti;

intstatus;

struct termiosOpt;

tcgetattr(fd, &Opt);

for ( i= 0;i < sizeof(speed_arr) / sizeof(int);i++) {

if(speed == name_arr[i]) {

tcflush(fd, TCIOFLUSH);

cfsetispeed(&Opt, speed_arr[i]);

cfsetospeed(&Opt, speed_arr[i]);

status = tcsetattr(fd, TCSANOW, &Opt);

if(status != 0) {

perror("tcsetattr fd");

return;

}

tcflush(fd,TCIOFLUSH);

}

}

}

3.设置串口信息

这主要包括:数据位、停止位、奇偶校验位这些主要的信息。

/**

*@brief设置串口数据位,停止位和效验位

*@paramfd类型int打开的串口文件句柄

*@paramdatabits类型int数据位取值为7或者8

*@paramstopbits类型int停止位取值为1或者2

*@paramparity类型int效验类型取值为N,E,O,,S

*/

int set_Parity(int fd,int databits,int stopbits,int parity)

{

struct termios options;

if( tcgetattr( fd,&options)!=0) {

perror("SetupSerial 1");

return(FALSE);

}

options.c_cflag &= ~CSIZE;

options.c_lflag&= ~(ICANON | ECHO | ECHOE | ISIG);/*Input*/

options.c_oflag&= ~OPOST;/*Output*/

switch (databits) /*设置数据位数*/

{

case 7:

options.c_cflag |= CS7;

break;

case 8:

options.c_cflag |= CS8;

break;

default:

fprintf(stderr,"Unsupported data size/n"); return (FALSE);

}

switch (parity)

{

case ‘n’:

case ‘N’:

options.c_cflag &= ~PARENB;/* Clear parity enable */

options.c_iflag &= ~INPCK;/* Enable parity checking */

break;

case ‘o’:

case ‘O’:

options.c_cflag |= (PARODD | PARENB); /*设置为奇效验*/

options.c_iflag |= INPCK;/* Disnable parity checking */

break;

case ‘e’:

case ‘E’:

options.c_cflag |= PARENB;/* Enable parity */

options.c_cflag &= ~PARODD;/*转换为偶效验*/

options.c_iflag |= INPCK;/* Disnable parity checking */

break;

case ‘S’:

case ‘s’:/*as no parity*/

options.c_cflag &= ~PARENB;

options.c_cflag &= ~CSTOPB;break;

default:

fprintf(stderr,"Unsupported parity/n");

return (FALSE);

}

/*设置停止位*/

switch (stopbits)

{

case 1:

options.c_cflag &= ~CSTOPB;

break;

case 2:

options.c_cflag |= CSTOPB;

break;

default:

fprintf(stderr,"Unsupported stop bits/n");

return (FALSE);

}

/* Set input parity option */

if (parity != ‘n’)

options.c_iflag |= INPCK;

tcflush(fd,TCIFLUSH);

options.c_cc[VTIME] = 0; /*设置超时0 seconds*/

options.c_cc[VMIN] = 13; /* define the minimum bytes data to be readed*/

if (tcsetattr(fd,TCSANOW,&options) != 0)

{

perror("SetupSerial 3");

return (FALSE);

}

return (TRUE);

}

在上述代码中,有两句话特别重要:

options.c_cc[VTIME] = 0; /*设置超时0 seconds*/

options.c_cc[VMIN] = 13; /* define the minimum bytes data to be readed*/

这两句话决定了对串口读取的函数read()的一些功能。我将着重介绍一下他们对read()函数的影响。

对串口操作的结构体是

Struct{

tcflag_tc_iflag;/*输入模式标记*/

tcflag_tc_oflag;/*输出模式标记*/

tcflag_tc_cflag;/*控制模式标记*/

tcflag_tc_lflag;/*本地模式标记*/

cc_tc_line;/*线路规程*/

cc_tc_cc[NCCS];/*控制符号*/

};

其中cc_tc_line只有在一些特殊的系统程序(比如,设置通过tty设备来通信的网络协议)中才会用。在数组c_cc中有两个下标(VTIME和VMIN)对应的元素不是控制符,并且只是在原始模式下有效。只有在原始模式下,他们决定了read()函数在什么时候返回。在标准模式下,除非设置了O_NONBLOCK选项,否则只有当遇到文件结束符或各行的字符都已经编辑完毕后才返回。

控制符VTIME和VMIN之间有着复杂的关系。VTIME定义要求等待的零到几百毫秒的时间量(通常是一个8位的unsigned char变量,取值不能大于cc_t)。VMIN定义了要求等待的最小字节数(不是要求读的字节数——read()的第三个参数才是指定要求读的最大字节数),这个字节数可能是0。

l如果VTIME取0,VMIN定义了要求等待读取的最小字节数。函数read()只有在读取了VMIN个字节的数据或者收到一个信号的时候才返回。

l如果VMIN取0,VTIME定义了即使没有数据可以读取,read()函数返回前也要等待几百毫秒的时间量。这时,read()函数不需要像其通常情况那样要遇到一个文件结束标志才返回0。

l如果VTIME和VMIN都不取0,VTIME定义的是当接收到第一个字节的数据后开始计算等待的时间量。如果当调用read函数时可以得到数据,计时器马上开始计时。如果当调用read函数时还没有任何数据可读,则等接收到第一个字节的数据后,计时器开始计时。函数read可能会在读取到VMIN个字节的数据后返回,也可能在计时完毕后返回,这主要取决于哪个条件首先实现。不过函数至少会读取到一个字节的数据,因为计时器是在读取到第一个数据时开始计时的。

l如果VTIME和VMIN都取0,即使读取不到任何数据,函数read也会立即返回。同时,返回值0表示read函数不需要等待文件结束标志就返回了。

这就是这两个变量对read函数的影响。我使用的读卡器每次传送的数据是13个字节,一开始,我把它们设置成

options.c_cc[VTIME] = 150

options.c_cc[VMIN] = 0;

结果,每次读取的信息只有8个字节,剩下的5个字节要等到下一次打卡时才能收到。就是由于这个原因造成的。根据上面规则的第一条,我把VTIME取0,VMIN=13,也就是正好等于一次需要接收的字节数。这样就实现了一次读取13个字节值。同时,得出这样的结论,如果读卡器送出的数据为n个字节,那么就把VMIN=n,这样一次读取的信息正好为读卡器送出的信息,并且读取的时候不需要进行循环读取。

4.读取数据

有了上面的函数后,我设置了串口的基本信息,根据我们自己的实际情况,设置了相应的参数,就可以读取数据了。

void getcardinfo(char *buff){

int fd;

int nread,count=0;

char tempbuff[13];

char *dev= "/dev/ttyS0"; //串口1

fd = OpenDev(dev);

set_speed(fd,9600);

if (set_Parity(fd,8,1,’N’) == FALSE){

printf("Set Parity Error/n");

//return -1;

}

while (1) //循环读取数据

{

count=0;

//sleep(5000);

while(1)

{

if((nread = read(fd, tempbuff, 13))>0)

{

//printf("/nLen %d/n",nread);

memcpy(&buff[count],tempbuff,nread);

count+=nread;

}

if(count==13)

{

buff[count+1] = ‘/0’;

//printf( "/n%s", buff);

break;

}

}

//break;

}

//return buff;

close(fd);

pthread_exit(NULL);

//close(fd);

// exit (0);

}

这是我原来的程序,其实把VMIN设置以后,可以改成:

void getcardinfo(char *buff){

int fd;

int nread,count=0;

char tempbuff[13];

char *dev= "/dev/ttyS0"; //串口1

fd = OpenDev(dev);

set_speed(fd,9600);

if (set_Parity(fd,8,1,’N’) == FALSE){

printf("Set Parity Error/n");

//return -1;

}

nread = read(fd, buff, 13)

close(fd);

}

5.程序完整代码:

#include<stdio.h>/*标准输入输出定义*/

#include<stdlib.h>/*标准函数库定义*/

#include<unistd.h>/*Unix标准函数定义*/

#include<sys/types.h>

#include<sys/stat.h>

#include<fcntl.h>/*文件控制定义*/

#include<termios.h>/*PPSIX终端控制定义*/

#include<errno.h>/*错误号定义*/

#define FALSE-1

#define TRUE0

/**

*@brief设置串口通信速率

*@paramfd类型int打开串口的文件句柄

*@paramspeed类型int串口速度

*@returnvoid

*/

int speed_arr[] = { B38400, B19200, B9600, B4800, B2400, B1200, B300,

B38400, B19200, B9600, B4800, B2400, B1200, B300, };

int name_arr[] = {38400,19200,9600,4800,2400,1200,300, 38400,

19200,9600, 4800, 2400, 1200,300, };

void set_speed(int fd, int speed){

inti;

intstatus;

struct termiosOpt;

tcgetattr(fd, &Opt);

for ( i= 0;i < sizeof(speed_arr) / sizeof(int);i++) {

if(speed == name_arr[i]) {

tcflush(fd, TCIOFLUSH);

cfsetispeed(&Opt, speed_arr[i]);

cfsetospeed(&Opt, speed_arr[i]);

status = tcsetattr(fd, TCSANOW, &Opt);

if(status != 0) {

perror("tcsetattr fd");

return;

}

tcflush(fd,TCIOFLUSH);

}

}

}

/**

*@brief设置串口数据位,停止位和效验位

*@paramfd类型int打开的串口文件句柄

*@paramdatabits类型int数据位取值为7或者8

*@paramstopbits类型int停止位取值为1或者2

*@paramparity类型int效验类型取值为N,E,O,,S

*/

int set_Parity(int fd,int databits,int stopbits,int parity)

{

struct termios options;

if( tcgetattr( fd,&options)!=0) {

perror("SetupSerial 1");

return(FALSE);

}

options.c_cflag &= ~CSIZE;

options.c_lflag&= ~(ICANON | ECHO | ECHOE | ISIG);/*Input*/

options.c_oflag&= ~OPOST;/*Output*/

switch (databits) /*设置数据位数*/

{

case 7:

options.c_cflag |= CS7;

break;

case 8:

options.c_cflag |= CS8;

break;

default:

fprintf(stderr,"Unsupported data size/n"); return (FALSE);

}

switch (parity)

{

case ‘n’:

case ‘N’:

options.c_cflag &= ~PARENB;/* Clear parity enable */

options.c_iflag &= ~INPCK;/* Enable parity checking */

break;

case ‘o’:

case ‘O’:

options.c_cflag |= (PARODD | PARENB); /*设置为奇效验*/

options.c_iflag |= INPCK;/* Disnable parity checking */

break;

case ‘e’:

case ‘E’:

options.c_cflag |= PARENB;/* Enable parity */

options.c_cflag &= ~PARODD;/*转换为偶效验*/

options.c_iflag |= INPCK;/* Disnable parity checking */

break;

case ‘S’:

case ‘s’:/*as no parity*/

options.c_cflag &= ~PARENB;

options.c_cflag &= ~CSTOPB;break;

default:

fprintf(stderr,"Unsupported parity/n");

return (FALSE);

}

/*设置停止位*/

switch (stopbits)

{

case 1:

options.c_cflag &= ~CSTOPB;

break;

case 2:

options.c_cflag |= CSTOPB;

break;

default:

fprintf(stderr,"Unsupported stop bits/n");

return (FALSE);

}

/* Set input parity option */

if (parity != ‘n’)

options.c_iflag |= INPCK;

tcflush(fd,TCIFLUSH);

options.c_cc[VTIME] = 0; /*设置超时15 seconds*/

options.c_cc[VMIN] = 13; /* define the minimum bytes data to be readed*/

if (tcsetattr(fd,TCSANOW,&options) != 0)

{

perror("SetupSerial 3");

return (FALSE);

}

return (TRUE);

}

/**********************************************************************

代码说明:使用串口一测试的,发送的数据是字符,

但是没有发送字符串结束符号,所以接收到后,后面加上了结束符号

**********************************************************************/

/*********************************************************************/

int OpenDev(char *Dev)

{

intfd = open( Dev, O_RDWR );

//| O_NOCTTY | O_NDELAY

if (-1 == fd)

{

perror("Can’t Open Serial Port");

return -1;

}

else

return fd;

}

void getcardinfo(char *buff){

int fd;

int nread,count=0;

char tempbuff[13];

char *dev= "/dev/ttyS0"; //串口1

fd = OpenDev(dev);

set_speed(fd,9600);

if (set_Parity(fd,8,1,’N’) == FALSE){

printf("Set Parity Error/n");

//return -1;

}

while (1) //循环读取数据

{

count=0;

//sleep(5000);

while(1)

{

if((nread = read(fd, tempbuff, 13))>0)

{

//printf("/nLen %d/n",nread);

memcpy(&buff[count],tempbuff,nread);

count+=nread;

}

if(count==13)

{

buff[count+1] = ‘/0’;

//printf( "/n%s", buff);

break;

}

}

//break;

}

//return buff;

close(fd);

pthread_exit(NULL);

//close(fd);

// exit (0);

}

家!甜蜜的家!天下最美好的莫过於家

关于Linux下串口通信的一点心得

相关文章:

你感兴趣的文章:

标签云: