setsockopt应用

setsockopt(sfd, SOL_SOCKET, SO_SNDBUF, (void *)&avg, intsize)//(256 * 1024 * 1024) if udp, set this option#ifdef IPV6_V6ONLYif (next->ai_family == AF_INET6) { setsockopt(sfd, IPPROTO_IPV6, IPV6_V6ONLY, (char *) &flags, sizeof(flags));setsockopt(sfd, IPPROTO_TCP, TCP_NODELAY, (void *)&flags, sizeof(flags));setsockopt(sfd, SOL_SOCKET, SO_REUSEADDR, (void *)&flags, sizeof(flags));setsockopt(sfd, SOL_SOCKET, SO_KEEPALIVE, (void *)&flags, sizeof(flags));struct linger ling = {0, 0};setsockopt(sfd, SOL_SOCKET, SO_LINGER, (void *)&ling, sizeof(ling));

————————————————————————————————————–

SO_REUSEADDR能用在以下四种情况下。 (摘自《Unix网络编程》卷一,即UNPv1) 1、当有一个有相同本地地址和端口的socket1处于TIME_WAIT状态时,而你启动的程式的socket2要占用该地址和端口,你的程式就要用到该选项。 2、SO_REUSEADDR允许同一port上启动同一服务器的多个实例(多个进程)。但每个实例绑定的IP地址是不能相同的。在有多块网卡或用IP Alias技术的机器可以测试这种情况。 3、SO_REUSEADDR允许单个进程绑定相同的端口到多个socket上,但每个socket绑定的ip地址不同。这和2非常相似,差别请看UNPv1。 4、SO_REUSEADDR允许完全相同的地址和端口的重复绑定。但这只用于UDP的多播,不用于TCP。SO_LINGER此选项指定函数close对面向连接的协议如何操作(如TCP)。缺省close操作是立即返回,如果有数据残留在套接口缓冲区中则系统将试着将这些数据发送给对方。l_onoff为0,则该选项关闭,l_linger的值被忽略,等于缺省情况,close立即返回;l_onoff为非0,l_linger为0,则套接口关闭时TCP夭折连接,TCP将丢弃保留在套接口发送缓冲区中的任何数据并发送一个RST给对方,而不是通常的四分组终止序列,这避免了TIME_WAIT状态;l_onoff 为非0,l_linger为非0,当套接口关闭时内核将拖延一段时间(由l_linger决定)。如果套接口缓冲区中仍残留数据,进程将处于睡眠状态,直 到(a)所有数据发送完且被对方确认,之后进行正常的终止序列(描述字访问计数为0)或(b)延迟时间到。此种情况下,应用程序检查close的返回值是非常重要的,如果在数据发送完并被确认前时间到,close将返回EWOULDBLOCK错误且套接口发送缓冲区中的任何数据都丢失。close的成功返回仅告诉我们发送的数据(和FIN)已由对方TCP确认,它并不能告诉我们对方应用进程是否已读了数据。如果套接口设为非阻塞的,它将不等待close完 成。SO_KEEPALIVE 保持连接检测对方主机是否崩溃,避免(服务器)永远阻塞于TCP连接的输入。设置该选项后,如果2小时内在此套接口的任一方向都没有数据交换,TCP就自动给对方 发一个保持存活探测分节(keepalive probe)。这是一个对方必须响应的TCP分节.它会导致以下三种情况:对方接收一切正常:以期望的ACK响应。2小时后,TCP将发出另一个探测分节。对方已崩溃且已重新启动:以RST响应。套接口的待处理错误被置为ECONNRESET,套接 口本身则被关闭。对方无任何响应:源自berkeley的TCP发送另外8个探测分节,相隔75秒一个,试图得到一个响应。在发出第一个探测分节11分钟 15秒后若仍无响应就放弃。套接口的待处理错误被置为ETIMEOUT,套接口本身则被关闭。如ICMP错误是“host unreachable(主机不可达)”,说明对方主机并没有崩溃,但是不可达,这种情况下待处理错误被置为 EHOSTUNREACH。 在该书的第158页有更详细的描述。 根据上面的介绍我们可以知道对端以一种非优雅的方式断开连接的时候,我们可以设置SO_KEEPALIVE属性使得我们在2小时以后发现对方的TCP连接是否依然存在。 keepAlive = 1; Setsockopt(listenfd, SOL_SOCKET, SO_KEEPALIVE, (void*)&keepAlive, sizeof(keepAlive)); 如果我们不能接受如此之长的等待时间,从TCP-Keepalive-HOWTO上可以知道一共有两种方式可以设置,一种是修改内核关于网络方面的配置参数,另外一种就是SOL_TCP字段的TCP_KEEPIDLE, TCP_KEEPINTVL, TCP_KEEPCNT三个选项。/** Sets a socket’s send buffer size to the maximum allowed by the system.*/static void maximize_sndbuf(const int sfd) { socklen_t intsize = sizeof(int); int last_good = 0; int min, max, avg; int old_size; /* Start with the default size. */ if (getsockopt(sfd, SOL_SOCKET, SO_SNDBUF, &old_size, &intsize) != 0) { if (settings.verbose > 0) perror("getsockopt(SO_SNDBUF)"); return; } /* Binary-search for the real maximum. */ min = old_size; max = MAX_SENDBUF_SIZE; while (min <= max) { avg = ((unsigned int)(min + max)) / 2; if (setsockopt(sfd, SOL_SOCKET, SO_SNDBUF, (void *)&avg, intsize) == 0) { last_good = avg; min = avg + 1; } else { max = avg – 1; } } if (settings.verbose > 1) fprintf(stderr, "<%d send buffer was %d, now %d/n", sfd, old_size, last_good);}

TCP_NODELAY 和 TCP_CORK,这两个选项都对网络连接的行为具有重要的作用。许多UNIX系统都实现了 TCP_NODELAY选项,但是,TCP_CORK则是Linux系统所独有的 而且相对较新;它首先在内核版本2.4上得以实现。此外,其他UNIX系统版本也有功能类似的选项,值得注意的是,在某种由BSD派生的系统上的 TCP_NOPUSH选项其实就是TCP_CORK的一部分具体实现。TCP_NODELAY和TCP_CORK基本上控制了包的“Nagle 化”,Nagle化在这里的含义是采用Nagle算法把较小的包组装为更大的帧。 John Nagle是Nagle算法的发明人,后者就是用他的名字来命名的,他在1984年首次用这种方法来尝试解决福特汽车公司的网络拥塞问题(欲了解详情请参 看IETF RFC 896)。他解决的问题就是所谓的silly window syndrome ,中文称“愚蠢窗口症候群”,具体含义是,因为普遍终端应用程序每产生一次击键操作就会发送一个包,而典型情况下一个包会拥有一个字节的数据载荷以及40 个字节长的包头,于是产生4000%的过载,很轻易地就能令网络发生拥塞,。 Nagle化后来成了一种标准并且立即在因特网上得以实现。它现在已经成为缺省配置了,但在我们看来,有些场合下把这一选项关掉也是合乎需要的。现 在让我们假设某个应用程序发出了一个请求,希望发送小块数据。我们可以选择立即发送数据或者等待产生更多的数据然后再一次发送两种策略。如果我们马上发 送数据,那么交互性的以及客户/服务器型的应用程序将极大地受益。例如,当我们正在发送一个较短的请求并且等候较大的响应时,相关过载与传输的数据总量相 比就会比较低,而且,如果请求立即发出那么响应时间也会快一些。以上操作可以通过设置套接字的TCP_NODELAY选项来完成,这样就禁用了Nagle 算法。另外一种情况则需要我们等到数据量达到最大时才通过网络一次发送全部数据,这种数据传输方式有益于大量数据的通信性能,典型的应用就是文 件服务器。应用 Nagle算法在这种情况下就会产生问题。但是,如果你正在发送大量数据,你可以设置TCP_CORK选项禁用Nagle化,其方式正好同 TCP_NODELAY相反(TCP_CORK 和 TCP_NODELAY 是互相排斥的)。下面就让我们仔细分析下其工作原理。假设应用程序 使用sendfile()函数来转移大量数据。应用协议通常要求发送某些信息来预先解释数据,这些信息其实就是报头内容。典型情况下报头很 小,而且套接字上设置了TCP_NODELAY。有报头的包将被立即传输,在某些情况下(取决于内部的包计数器),因为这个包成功地被对方收到后需要请求 对方确认。这样,大量数据的传输就会被推迟而且产生了不必要的网络流量交换。但是,如果我们在套接字上设置了TCP_CORK(可以比喻为在管 道上插入“塞子”)选项,具有报头的包就会填补大量的数据,所有的数据都根据大小自动地 通过包传输出去。当数据传输完成时,最好取消TCP_CORK 选项设置给连接“拔去塞子”以便任一部分的帧都能发送出去。这同“塞住”网络连接同等重要。总而言之,如果你肯定能一起发送多个数据集合(例如HTTP响应的头和正文),那么我们建议你设置TCP_CORK选项,这样在这些数据之间不存在延迟。能极大地有益于WWW、FTP以及文件服务器的性能,同时也简化了你的工作。示例代码如下:

intfd, on = 1;…/* 此处是创建套接字等操作,出于篇幅的考虑省略*/…setsockopt (fd, SOL_TCP, TCP_CORK, &on, sizeof (on)); /* cork */write (fd, …);fprintf (fd, …);sendfile (fd, …);write (fd, …);sendfile (fd, …);…on = 0;setsockopt (fd, SOL_TCP, TCP_CORK, &on, sizeof (on)); /* 拔去塞子 */

不幸的是,许多常用的程序并没有考虑到以上问题。例如,Eric Allman编写的sendmail就没有对其套接字设置任何选项。

Apache HTTPD是因特网上最流行的Web服务器,它的所有套接字就都设置了TCP_NODELAY选项,而且其性能也深受大多数用户的满意。这是为什么呢?答 案就在于实现的差别之上。由BSD衍生的TCP/IP协议栈(值得注意的是FreeBSD)在这种状况下的操作就不同。当在TCP_NODELAY 模式下提交大量小数据块传输时,大量信息将按照一次write()函数调用发送一块数据的方式发送出去。然而,因为负责请求交付确认的记数器是面向字节而 非面向包(在Linux上)的,所以引入延迟的概率就降低了很多。结果仅仅和全部数据的大小有关系。而 Linux 在第一包到达之后就要求确认,FreeBSD则在进行如此操作之前会等待好几百个包。

在Linux系统上,TCP_NODELAY的效果同习惯于BSD TCP/IP协议栈的开发者所期望的效果有很大不同,而且在Linux上的Apache性能表现也会更差些。其他在Linux上频繁采用TCP_NODELAY的应用程序也有同样的问题。

< end .entry-content >

如果有可能,我带你去远行。

setsockopt应用

相关文章:

你感兴趣的文章:

标签云: