Asynctask解析以及注意事项

  [java]

  说到AsyncTask这个类,好多人其实不太了解。最近看了下代码,把心得分享给大家。

  AsyncTask的execute的执行流程为

  先调用ThreadPoolExecutor.execute(mFuture);

  然后ThreadPoolExecutor.execute(mFuture) 会调用ThreadPoolExecutor.addWorker(mFuture);

  最后ThreadPoolExecutor.addWorker(mFuture)会调用mFuture的run()方法,run方法中就是该线程要执行操作的地方

  到此我们来关注一下mFuture,AsyncTask中的mFuture是一个FutureTask,FutureTask实现了Future<V>, Runnable两个接口,

  Future 表示异步计算的结果。它提供了检查计算是否完成的方法,以等待计算的完成,并获取计算的结果,计算完成后只能使用 get 方法来获取结果。

  mFuture以mWorker作为参数

  现看mFuture的构造方法:

  public void run() {

  sync.innerRun();

  }

  sync是什么呢?Sync类是一个内部类,我们看看它的初始化

  public FutureTask(Callable<V> callable) {

  if (callable == null)

  throw new NullPointerException();

  sync = new Sync(callable);

  }

  在看看sync.innerRun()方法:

  void innerRun() {

  if (!compareAndSetState(READY, RUNNING))

  return;

  runner = Thread.currentThread();

  if (getState() == RUNNING) { // recheck after setting thread

  V result;

  try {

  result = callable.call();

  } catch (Throwable ex) {

  setException(ex);

  return;

  }

  set(result);

  } else {

  releaseShared(0); // cancel

  }

  }

  从代码可以看到,其实最终是调用了callable.call()这个方法。

  从AsyncTask中我们可以知道,我们传入的Callable是我们的WorkerRunnable

  所以,我们会调用WorkerRunnable的call()方法,在call方法里面

  返回postResult(doInBackground(mParams));

  通知UI线程更新,这就是调用过程

  Notes:

  1:

  因为AsyncTask里面的内部handler和Executor都是静态变量,所以,他们控制着所有的子类。

  2:

  我们可以通过AsyncTask.execute()方法来调用系统默认的线程池来处理当前的任务,

  系统默认的线程池用的是SerialExecutor.这个线程池控制所有任务按顺序执行。也就是一次只执行一条.

  当前执行完了,才执行下一条.2.3平台以前是所有的任务并发执行,这会导致一种情况,就是其中一条任务执行出问题了,会引起其他任务出现错误.

  3:

  AsyncTask.executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR)你也可以采用这个系统提供的线程池来处理你的任务

  默认这个线程池是并发处理任务的,也就是不按顺序来.核心为5条,最大128条

  4:

  你也可以使用自定义的线程池,这样就可以即使的执行你的任务需求,而不是用系统的。因为用系统默认的线程池可以需要等待,它默认是按顺序执行(THREAD_POOL_EXECUTOR)或者最多执行5个(SerialExecutor).

  自己使用自定义线程池方式如下:

  new AsyncTask.executeOnExecutor((ExecutorService)Executors.newCachedThreadPool()).

  5: 不要随意使用AsyncTask,除非你必须要与UI线程交互.默认情况下使用Thread即可,要注意需要将线程优先级调低.

  从google官方文档你也可以看到,AsyncTasks should ideally be used for short operations (a few seconds at the most.)

  AsyncTask适合处理短时间的操作,长时间的操作,比如下载一个很大的视频,这就需要你使用自己的线程来下载,不管是断点下载还是其它的.

  当然,如果你需要开启自定义的很多线程来处理你的任务,切记你此时可以考虑自定义线程池

  */

  public abstract class AsyncTask<Params, Progress, Result> {

  private static final String LOG_TAG = “AsyncTask”;

  // 核心线程数是要

  private static final int CORE_POOL_SIZE = 5;

  // 最大线程数支持128

  private static final int MAXIMUM_POOL_SIZE = 128;

  // 这个参数的的意思是当前线程池里面的thread如果超过了规定的核心线程5,如果有线程的空闲时间超过了这个数值,

  // 数值的单位自己指定,就回收该线程的资源,达到动态调整线程池资源的目的.

  private static final int KEEP_ALIVE = 1;

  // ThreadFactory是用来在线程池中构建新线程的方法.可以看到每次构建一个方法,名字都不同.为”AsyncTask # 1++”.

  private static final ThreadFactory sThreadFactory = new ThreadFactory() {

  private final AtomicInteger mCount = new AtomicInteger(1);

  public Thread newThread(Runnable r) {

  return new Thread(r, “AsyncTask #” + mCount.getAndIncrement());

  }

  };

  // 线程池所使用的缓冲队列.FIFO,它用于存放如果当前线程池中核心线程已满,此时来的任务都被放到缓冲队列中等待被处理.

  // 初始化容量为10

  private static final BlockingQueue<Runnable> sPoolWorkQueue =

  new LinkedBlockingQueue<Runnable>(10);

  /**

  * An {@link Executor} that can be used to execute tasks in parallel.

  */

  // 线程池的初始化,指定了核心线程5,最大线程128,超时1s,缓冲队列等, 你在使用asyncTask的时候,可以传入这个参数,

  // 就可以让多条线程并发的执行了.比如:executeOnExecutor(AsyncTask.THREAD_POOL_EXECUTOR)

  public static final Executor THREAD_POOL_EXECUTOR

  = new ThreadPoolExecutor(CORE_POOL_SIZE, MAXIMUM_POOL_SIZE, KEEP_ALIVE,

  TimeUnit.SECONDS, sPoolWorkQueue, sThreadFactory);

  /**

  * An {@link Executor} that executes tasks one at a time in serial

  * order. This serialization is global to a particular process.

  */

  // 从这个线程池内部看,已经不是并行执行任务,而是一次只执行一个.

  public static final Executor SERIAL_EXECUTOR = new SerialExecutor();

  // 消息数值

  private static final int MESSAGE_POST_RESULT = 0x1;

  private static final int MESSAGE_POST_PROGRESS = 0x2;

  // 这个InternalHandler就是用来是UI线程打交道的。可以看到它是个静态的变量。也就是说谁第一次调用它,下一次另一个

  // 线程来调用,也不会实例话这个常量.关于这个handler,默认asynctask都是从主线程中调用的,所以,这个Handler默认

  // 获得了主线程的Looper,所以就能和主线程来交互. Notes:假如你在一个子线程中构建了自己的Looper并使用Asynctask,

  // 应该会出问题,因为此时这个Handler就属于子线程了,就不能去操控UI的操作.这应该算是AsyncTask的Bug.网上有人说

  // 在4.0上运行没问题,2.3会有问题,原因是因为4.0中的ActivityThread.main方法里面最先用主线程的Looper来初始化了这个

  // AsyncTask。理论上Asynctask应该判断当前的Looper如果不是MainThread的Looper的话,抛出异常,遗憾的是,

  // google没有考虑到这里,只是在文档中要求必须在主线程中调用,其实,很不好!

  private static final InternalHandler sHandler = new InternalHandler();

  private static volatile Executor sDefaultExecutor = SERIAL_EXECUTOR;

  // 自定义的静态内部类

  private final WorkerRunnable<Params, Result> mWorker;

  // 其实就是也一个Runnable,实现了这个接口

  private final FutureTask<Result> mFuture;

  // 默认为pending状态。

  private volatile Status mStatus = Status.PENDING;

  // 原子操作,专门用来处理并发访问,就可以不用synchronized

  private final AtomicBoolean mCancelled = new AtomicBoolean();

  private final AtomicBoolean mTaskInvoked = new AtomicBoolean();

  private static class SerialExecutor implements Executor {

  // ArrayDeque是一个双向队列,我们来理解下这个线程池是如何做到一次只

  // 执行一条任务的.比如此时有多处先后都调用了AsyncTask.execute()方法,

  // 对第一条最先到的任务来说,首先自己被假如到了队列中,因为第一次mActive == null成立,

  // 所以执行THREAD_POOL_EXECUTOR.execute(mActive).且mActive 此时不等于Null.

  // 所以第二条任务来的时候,只是被加入到了队列中,并不会执行.除非第一条任务执行完了,在它的finnally方法中

  // 调用scheduleNext()去再次从对列中取出下一条任务来执行.这样就实现了所有任务按顺序执行的功能.

  final ArrayDeque<Runnable> mTasks = new ArrayDeque<Runnable>();

  Runnable mActive;

  public synchronized void execute(final Runnable r) {

  // 把线程offer到队列中

  mTasks.offer(new Runnable() {

  public void run() {

  try {

  r.run();

  } finally {

  // 一条执行完了,执行下一条任务

  scheduleNext();

  }

  }

  });

  if (mActive == null) {

  scheduleNext();

  }

  }

  protected synchronized void scheduleNext() {

  if ((mActive = mTasks.poll()) != null) {

  THREAD_POOL_EXECUTOR.execute(mActive);

  }

  }

  }

  /**

  * Indicates the current status of the task. Each status will be set only once

  * during the lifetime of a task.

  */

  public enum Status {

  /**

  * Indicates that the task has not been executed yet.

  */

  PENDING,

  /**

  * Indicates that the task is running.

  */

  RUNNING,

  /**

  * Indicates that {@link AsyncTask#onPostExecute} has finished.

  */

  FINISHED,

  }

  /** @hide Used to force static handler to be created. */

  public static void init() {

  sHandler.getLooper();

  }

  /** @hide */

  public static void setDefaultExecutor(Executor exec) {

  sDefaultExecutor = exec;

  }

  /**

  * Creates a new asynchronous task. This constructor must be invoked on the UI thread.

  */

  public AsyncTask() {

  //初始化mWorker并复写call方法,后面会介绍什么时候调用

  mWorker = new WorkerRunnable<Params, Result>() {

  // 这个方法就是当你嗲用excutor.excute()方法后执行的方法。至于是如何执行的,我们后面会分析

  public Result call() throws Exception {

  mTaskInvoked.set(true);

  // 将线程优先级设置为后台线程,默认和主线程优先级一样,如果不这样做,也会降低程序性能.因为会优先

  // 抢占cpu资源.所以,如果你在程序中不使用asyncTask而是自己new 一条线程出来,记得把线程的优先级设置为

  // 后台线程

  Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);

  //这个地方调用了我们自己实现的doInBackground

  return postResult(doInBackground(mParams));

  }

  };

  // 用mWorker创建一个可取消的异步计算任务

  mFuture = new FutureTask<Result>(mWorker) {

  @Override

  // 当任务不管是正常终止、异常或取消而完成的,都回调此方法, 即isDone()为true时,isDone不管成功还是失败都

  // 返回true

  protected void done() {

  try {

  // 如果当前的task没有被invoke,就被finish掉

  postResultIfNotInvoked(get());

  } catch (InterruptedException e) {

  android.util.Log.w(LOG_TAG, e);

  } catch (ExecutionException e) {

  throw new RuntimeException(“An error occured while executing doInBackground()”,

  e.getCause());

  } catch (CancellationException e) {

  postResultIfNotInvoked(null);

  }

  }

  };

  }

  private void postResultIfNotInvoked(Result result) {

  final boolean wasTaskInvoked = mTaskInvoked.get();

  if (!wasTaskInvoked) {

  postResult(result);

  }

  }

  // 当doInBackground结束了,调用PostResult发布结果

  private Result postResult(Result result) {

  @SuppressWarnings(“unchecked”)

  Message message = sHandler.obtainMessage(MESSAGE_POST_RESULT,

  new AsyncTaskResult<Result>(this, result));

  message.sendToTarget();

  return result;

  }

  /**

  * Returns the current status of this task.

  *

  * @return The current status.

  */

  // 获得当前的状态

  public final Status getStatus() {

  return mStatus;

  }

  /**

  * Override this method to perform a computation on a background thread. The

  * specified parameters are the parameters passed to {@link #execute}

  * by the caller of this task.

  *

  * This method can call {@link #publishProgress} to publish updates

  * on the UI thread.

  *

  * @param params The parameters of the task.

  *

  * @return A result, defined by the subclass of this task.

  *

  * @see #onPreExecute()

  * @see #onPostExecute

  * @see #publishProgress

  */

  // 用户自己实现

  protected abstract Result doInBackground(Params… params);

  /**

  * Runs on the UI thread before {@link #doInBackground}.

  *

  * @see #onPostExecute

  * @see #doInBackground

  */

  // 用户自己实现

  protected void onPreExecute() {

  }

  /**

  * <p>Runs on the UI thread after {@link #doInBackground}. The

  * specified result is the value returned by {@link #doInBackground}.</p>

  *

  * <p>This method won’t be invoked if the task was cancelled.</p>

  *

  * @param result The result of the operation computed by {@link #doInBackground}.

  *

  * @see #onPreExecute

  * @see #doInBackground

  * @see #onCancelled(Object)

  */

  @SuppressWarnings({“UnusedDeclaration”})

  // 用户自己实现

  protected void onPostExecute(Result result) {

  }

  /**

  * Runs on the UI thread after {@link #publishProgress} is invoked.

  * The specified values are the values passed to {@link #publishProgress}.

  *

  * @param values The values indicating progress.

  *

  * @see #publishProgress

  * @see #doInBackground

  */

  @SuppressWarnings({“UnusedDeclaration”})

  // 用户自己实现

  protected void onProgressUpdate(Progress… values) {

  }

  /**

  * <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and

  * {@link #doInBackground(Object[])} has finished.</p>

  *

  * <p>The default implementation simply invokes {@link #onCancelled()} and

  * ignores the result. If you write your own implementation, do not call

  * <code>super.onCancelled(result)</code>.</p>

  *

  * @param result The result, if any, computed in

  * {@link #doInBackground(Object[])}, can be null

  *

  * @see #cancel(boolean)

  * @see #isCancelled()

  */

  @SuppressWarnings({“UnusedParameters”})

  protected void onCancelled(Result result) {

  onCancelled();

  }

  /**

  * <p>Applications should preferably override {@link #onCancelled(Object)}.

  * This method is invoked by the default implementation of

  * {@link #onCancelled(Object)}.</p>

  *

  * <p>Runs on the UI thread after {@link #cancel(boolean)} is invoked and

  * {@link #doInBackground(Object[])} has finished.</p>

  *

  * @see #onCancelled(Object)

  * @see #cancel(boolean)

  * @see #isCancelled()

  */

  protected void onCancelled() {

  }

  /**

  * Returns <tt>true</tt> if this task was cancelled before it completed

  * normally. If you are calling {@link #cancel(boolean)} on the task,

  * the value returned by this method should be checked periodically from

  * {@link #doInBackground(Object[])} to end the task as soon as possible.

  *

  * @return <tt>true</tt> if task was cancelled before it completed

  *

  * @see #cancel(boolean)

  */

  public final boolean isCancelled() {

  return mCancelled.get();

  }

  /**

  * <p>Attempts to cancel execution of this task. This attempt will

  * fail if the task has already completed, already been cancelled,

  * or could not be cancelled for some other reason. If successful,

  * and this task has not started when <tt>cancel</tt> is called,

  * this task should never run. If the task has already started,

  * then the <tt>mayInterruptIfRunning</tt> parameter determines

  * whether the thread executing this task should be interrupted in

  * an attempt to stop the task.</p>

  *

  * <p>Calling this method will result in {@link #onCancelled(Object)} being

  * invoked on the UI thread after {@link #doInBackground(Object[])}

  * returns. Calling this method guarantees that {@link #onPostExecute(Object)}

  * is never invoked. After invoking this method, you should check the

  * value returned by {@link #isCancelled()} periodically from

  * {@link #doInBackground(Object[])} to finish the task as early as

  * possible.</p>

  *

  * @param mayInterruptIfRunning <tt>true</tt> if the thread executing this

  * task should be interrupted; otherwise, in-progress tasks are allowed

  * to complete.

  *

  * @return <tt>false</tt> if the task could not be cancelled,

  * typically because it has already completed normally;

  * <tt>true</tt> otherwise

  *

  * @see #isCancelled()

  * @see #onCancelled(Object)

  */

  public final boolean cancel(boolean mayInterruptIfRunning) {

  mCancelled.set(true);

  return mFuture.cancel(mayInterruptIfRunning);

  }

  /**

  * Waits if necessary for the computation to complete, and then

  * retrieves its result.

  *

  * @return The computed result.

  *

  * @throws CancellationException If the computation was cancelled.

  * @throws ExecutionException If the computation threw an exception.

  * @throws InterruptedException If the current thread was interrupted

  * while waiting.

  */

  public final Result get() throws InterruptedException, ExecutionException {

  return mFuture.get();

  }

  /**

  * Waits if necessary for at most the given time for the computation

  * to complete, and then retrieves its result.

  *

  * @param timeout Time to wait before cancelling the operation.

  * @param unit The time unit for the timeout.

  *

  * @return The computed result.

  *

  * @throws CancellationException If the computation was cancelled.

  * @throws ExecutionException If the computation threw an exception.

  * @throws InterruptedException If the current thread was interrupted

  * while waiting.

  * @throws TimeoutException If the wait timed out.

  */

  public final Result get(long timeout, TimeUnit unit) throws InterruptedException,

  ExecutionException, TimeoutException {

  return mFuture.get(timeout, unit);

  }

  /**

  * Executes the task with the specified parameters. The task returns

  * itself (this) so that the caller can keep a reference to it.

  *

  * <p>Note: this function schedules the task on a queue for a single background

  * thread or pool of threads depending on the platform version. When first

  * introduced, AsyncTasks were executed serially on a single background thread.

  * Starting with {@link android.os.Build.VERSION_CODES#DONUT}, this was changed

  * to a pool of threads allowing multiple tasks to operate in parallel. Starting

  * {@link android.os.Build.VERSION_CODES#HONEYCOMB}, tasks are back to being

  * executed on a single thread to avoid common application errors caused

  * by parallel execution. If you truly want parallel execution, you can use

  * the {@link #executeOnExecutor} version of this method

  * with {@link #THREAD_POOL_EXECUTOR}; however, see commentary there for warnings

  * on its use.

  *

  * <p>This method must be invoked on the UI thread.

  *

  * @param params The parameters of the task.

  *

  * @return This instance of AsyncTask.

  *

  * @throws IllegalStateException If {@link #getStatus()} returns either

  * {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.

  *

  * @see #executeOnExecutor(ncurrent.Executor, Object[])

  * @see #execute(Runnable)

  */

  // 这个方法就是用户调用的excute方法,默认采用asynctask自带的线程池串行执行任务

  public final AsyncTask<Params, Progress, Result> execute(Params… params) {

  return executeOnExecutor(sDefaultExecutor, params);

  }

  /**

  * Executes the task with the specified parameters. The task returns

  * itself (this) so that the caller can keep a reference to it.

  *

  * <p>This method is typically used with {@link #THREAD_POOL_EXECUTOR} to

  * allow multiple tasks to run in parallel on a pool of threads managed by

  * AsyncTask, however you can also use your own {@link Executor} for custom

  * behavior.

  *

  * <p><em>Warning:</em> Allowing multiple tasks to run in parallel from

  * a thread pool is generally <em>not</em> what one wants, because the order

  * of their operation is not defined. For example, if these tasks are used

  * to modify any state in common (such as writing a file due to a button click),

  * there are no guarantees on the order of the modifications.

  * Without careful work it is possible in rare cases for the newer version

  * of the data to be over-written by an older one, leading to obscure data

  * loss and stability issues. Such changes are best

  * executed in serial; to guarantee such work is serialized regardless of

  * platform version you can use this function with {@link #SERIAL_EXECUTOR}.

  *

  * <p>This method must be invoked on the UI thread.

  *

  * @param exec The executor to use. {@link #THREAD_POOL_EXECUTOR} is available as a

  * convenient process-wide thread pool for tasks that are loosely coupled.

  * @param params The parameters of the task.

  *

  * @return This instance of AsyncTask.

  *

  * @throws IllegalStateException If {@link #getStatus()} returns either

  * {@link AsyncTask.Status#RUNNING} or {@link AsyncTask.Status#FINISHED}.

  *

  * @see #execute(Object[])

  */

  public final AsyncTask<Params, Progress, Result> executeOnExecutor(Executor exec,

  Params… params) {

  // 可以看出同一个任务只能执行一次

  if (mStatus != Status.PENDING) {

  switch (mStatus) {

  case RUNNING:

  throw new IllegalStateException(“Cannot execute task:”

  + ” the task is already running.”);

  case FINISHED:

  throw new IllegalStateException(“Cannot execute task:”

  + ” the task has already been executed “

  + “(a task can be executed only once)”);

  }

  }

  mStatus = Status.RUNNING;

  // 调用用户–UI线程—自己实现的方法

  onPreExecute();

  mWorker.mParams = params;

  // 这个方法就会调用前面的mWorker的call方法

  exec.execute(mFuture);

  return this;

  }

  /**

  * Convenience version of {@link #execute(Object…)} for use with

  * a simple Runnable object. See {@link #execute(Object[])} for more

  * information on the order of execution.

  *

  * @see #execute(Object[])

  * @see #executeOnExecutor(ncurrent.Executor, Object[])

  */

  public static void execute(Runnable runnable) {

  sDefaultExecutor.execute(runnable);

  }

  /**

  * This method can be invoked from {@link #doInBackground} to

  * publish updates on the UI thread while the background computation is

  * still running. Each call to this method will trigger the execution of

  * {@link #onProgressUpdate} on the UI thread.

  *

  * {@link #onProgressUpdate} will note be called if the task has been

  * canceled.

  *

  * @param values The progress values to update the UI with.

  *

  * @see #onProgressUpdate

  * @see #doInBackground

  */

  protected final void publishProgress(Progress… values) {

  if (!isCancelled()) {

  sHandler.obtainMessage(MESSAGE_POST_PROGRESS,

  new AsyncTaskResult<Progress>(this, values)).sendToTarget();

  }

  }

  private void finish(Result result) {

  if (isCancelled()) {

  onCancelled(result);

  } else {

  onPostExecute(result);

  }

  mStatus = Status.FINISHED;

  }

  // 与UI交互

  private static class InternalHandler extends Handler {

  @SuppressWarnings({“unchecked”, “RawUseOfParameterizedType”})

  @Override

  public void handleMessage(Message msg) {

  AsyncTaskResult result = (AsyncTaskResult) msg.obj;

  switch (msg.what) {

  case MESSAGE_POST_RESULT:

  // There is only one result

  result.mTask.finish(result.mData[0]);

  break;

  case MESSAGE_POST_PROGRESS:

  result.mTask.onProgressUpdate(result.mData);

  break;

  }

  }

  }

  private static abstract class WorkerRunnable<Params, Result> implements Callable<Result> {

  Params[] mParams;

  }

  @SuppressWarnings({“RawUseOfParameterizedType”})

  // 存储异步执行结果的类

  private static class AsyncTaskResult<Data> {

  final AsyncTask mTask;

  final Data[] mData;

  AsyncTaskResult(AsyncTask task, Data… data) {

  mTask = task;

  mData = data;

  }

  }

  }

失败是成功的亲娘,没有失败哪来的成功呢?诺贝尔如果不经历千万次的失败,

Asynctask解析以及注意事项

相关文章:

你感兴趣的文章:

标签云: