JDK源码之Vector与HashSet解析

目录Vector简介Vector的成员变量(属性)Vector的构造函数Vector成员方法get方法set方法remove方法add方法其他方法Vector的扩容方法完整源码HashSet简介HashSet源码分析1. 属性(成员变量)2. 构造方法3. 成员方法3.1 添加元素add(E e)3.2 删除元素remove(Object o)3.3 查找元素contains(Object o)4. 完整代码LinkedHashSet分析总结

Vector简介

ArrayList 和 Vector 其实大同小异,基本结构都差不多,但是一些细节上有区别:比如线程安全与否,扩容的大小等,Vector的线程安全通过在方法上直接加synchronized实现。扩容默认扩大为原来的2倍。

继承体系

从图中我们可以看出:Vector继承了AbstractList,实现了List,RandomAccess,Cloneable,Serializable接口,因此Vector支持快速随机访问,可以被克隆,支持序列化。

Vector的成员变量(属性)

// Object类型的数组// 注意:访问修饰符有所不同,Vector用protected修饰,而ArrayList用private修饰。// JavaSe中:private变量只能被当前类的方法访问,而protected可以被同一包中的所有类和其他包的子类访问protected Object[] elementData;// 动态数组的实际有效大小,即数组中存储的元素个数protected int elementCount;// 动态数组的增长系数:若开始事先没有指定,则默认是增加一倍的大小protected int capacityIncrement;// 序列版本号private static final long serialVersionUID = -2767605614048989439L;

Vector的构造函数

Vector的构造函数有四个:

// 默认空参构造函数public Vector() {    // 调用指定初始容量的构造函数,初始容量为10    this(10);}// 可以指定初始容量的构造函数public Vector(int initialCapacity) {    // 调用指定初始容量和增长系数的构造函数,增长系数设置为0    this(initialCapacity, 0);}// 可以指定初始容量和增长系数的构造函数public Vector(int initialCapacity, int capacityIncrement) {    super();    if (initialCapacity < 0)        throw new IllegalArgumentException("Illegal Capacity: "+                                           initialCapacity);    // 根据初始容量创建一个Object类型的数组    this.elementData = new Object[initialCapacity];    // 给增长系数赋值    this.capacityIncrement = capacityIncrement;}// 参数为集合类型的构造函数public Vector(Collection<? extends E> c) {    elementData = c.toArray();    elementCount = elementData.length;    // c.toArray might (incorrectly) not return Object[] (see 6260652)    if (elementData.getClass() != Object[].class)        // 将参数集合c 中的数据拷贝到elementData        elementData = Arrays.copyOf(elementData, elementCount, Object[].class);}

Vector成员方法

get方法

// 获得指定下标的元素数据public synchronized E get(int index) {    if (index >= elementCount)        throw new ArrayIndexOutOfBoundsException(index);    return elementData(index);}@SuppressWarnings("unchecked")E elementData(int index) {    return (E) elementData[index];}

set方法

// 修改指定下标的元素数据public synchronized E set(int index, E element) {    if (index >= elementCount)        throw new ArrayIndexOutOfBoundsException(index);    E oldValue = elementData(index);    elementData[index] = element;    return oldValue;}

remove方法

// 删除某个元素数据public boolean remove(Object o) {    return removeElement(o);}// public synchronized boolean removeElement(Object obj) {    modCount++;    // 找到指定元素的下标    int i = indexOf(obj);    if (i >= 0) {        // 根据下标删除元素        removeElementAt(i);        return true;    }    return false;}// 根据下标删除元素public synchronized void removeElementAt(int index) {    modCount++;    if (index >= elementCount) {        throw new ArrayIndexOutOfBoundsException(index + " >= " +                                                 elementCount);    }    else if (index < 0) {        throw new ArrayIndexOutOfBoundsException(index);    }    // index之后的有效元素数量    int j = elementCount - index - 1;    if (j > 0) {        // 旧数组替换新数组        System.arraycopy(elementData, index + 1, elementData, index, j);    }    // 有效元素数量--    elementCount--;    elementData[elementCount] = null; /* to let gc do its work */}

add方法

// 在数组末尾添加指定元素public synchronized boolean add(E e) {    modCount++;    // 判断是否需要扩容    ensureCapacityHelper(elementCount + 1);    elementData[elementCount++] = e;    return true;}

其他方法

// 将数组Vector中的全部元素都拷贝到数组anArray中去,调用本地方法arraycopypublic synchronized void copyInto(Object[] anArray) {    System.arraycopy(elementData, 0, anArray, 0, elementCount);}public synchronized void trimToSize() {    modCount++;    int oldCapacity = elementData.length;    if (elementCount < oldCapacity) {        elementData = Arrays.copyOf(elementData, elementCount);    }}// 设置Vector数组的大小public synchronized void setSize(int newSize) {    // 修改次数++    modCount++;    // 判断设置的数组大小是否大于Vector中有存储的效元素的个数    // 若 newSize > Vector中有存储的效元素的个数,则调整Vector的大小    if (newSize > elementCount) {        // 调用判断是否扩容的方法,如果需要扩容则该方法内部调用扩容方法grow()        ensureCapacityHelper(newSize);    } else {        // 如果上述判断不成立,则将newSize位置之后开始的元素都设置为null        for (int i = newSize ; i < elementCount ; i++) {            elementData[i] = null;        }    }    // 更新有效元素个数    elementCount = newSize;}// 获取Vector的当前容量public synchronized int capacity() {    return elementData.length;}// 获取Vector里面的有效元素个数public synchronized int size() {    return elementCount;}// 判断Vecotor中是否包含元素 opublic boolean contains(Object o) {    return indexOf(o, 0) >= 0;}// 获取Vector数组中第一次出现对象o的下标,如果不存在,那么返回-1public int indexOf(Object o) {    return indexOf(o, 0);}// 返回从index出开始第一次出现对象o的下标,如果不存在,那么返回-1public synchronized int indexOf(Object o, int index) {    if (o == null) {        for (int i = index ; i < elementCount ; i++)            if (elementData[i]==null)                return i;    } else {        for (int i = index ; i < elementCount ; i++)            if (o.equals(elementData[i]))                return i;    }    return -1;}......

Vector的扩容方法

// 确定数组当前的容量大小public synchronized void ensureCapacity(int minCapacity) {    if (minCapacity > 0) {        modCount++;        ensureCapacityHelper(minCapacity);    }}// 如果:当前容量 > 当前数组长度,就调用grow(minCapacity)方法进行扩容// 由于该方法是在ensureCapacity()中被调用的,而ensureCapacity()方法中已经加上了synchronized锁,所以// 该方法不需要再加锁private void ensureCapacityHelper(int minCapacity) {    // overflow-conscious code    if (minCapacity - elementData.length > 0)        grow(minCapacity);}// 最大上限的数组容量大小private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE // Vector集合中的核心扩容方法private void grow(int minCapacity) {    // overflow-conscious code    // 获取旧数组的容量    int oldCapacity = elementData.length;    // 得到扩容后(如果需要扩容的话)的新数组容量    int newCapacity = oldCapacity + ((capacityIncrement > 0) ?                                      capacityIncrement : oldCapacity);    // 如果新容量 < 数组实际所需容量,则令newCapacity = minCapacity    if (newCapacity - minCapacity < 0)         newCapacity = minCapacity;    // 如果当前所需容量 > MAX_ARRAY_SIZE,则新容量设为 Integer.MAX_VALUE,否则设为 MAX_ARRAY_SIZE    if (newCapacity - MAX_ARRAY_SIZE > 0)         newCapacity = hugeCapacity(minCapacity);    elementData = Arrays.copyOf(elementData, newCapacity);}// 最大容量private static int hugeCapacity(int minCapacity) {    if (minCapacity < 0) // overflow        throw new OutOfMemoryError();    return (minCapacity > MAX_ARRAY_SIZE) ?        Integer.MAX_VALUE :        MAX_ARRAY_SIZE;}

完整源码

public class Vector<E>    extends AbstractList<E>    implements List<E>, RandomAccess, Cloneable, java.io.Serializable{    protected Object[] elementData;    protected int elementCount;    protected int capacityIncrement;    private static final long serialVersionUID = -2767605614048989439L;    public Vector(int initialCapacity, int capacityIncrement) {        super();        if (initialCapacity < 0)            throw new IllegalArgumentException("Illegal Capacity: "+                                               initialCapacity);        this.elementData = new Object[initialCapacity];        this.capacityIncrement = capacityIncrement;    }    public Vector(int initialCapacity) {        this(initialCapacity, 0);    }    public Vector() {        this(10);    }    public Vector(Collection<? extends E> c) {        elementData = c.toArray();        elementCount = elementData.length;        // c.toArray might (incorrectly) not return Object[] (see 6260652)        if (elementData.getClass() != Object[].class)            elementData = Arrays.copyOf(elementData, elementCount, Object[].class);    }    public synchronized void copyInto(Object[] anArray) {        System.arraycopy(elementData, 0, anArray, 0, elementCount);    }    public synchronized void trimToSize() {        modCount++;        int oldCapacity = elementData.length;        if (elementCount < oldCapacity) {            elementData = Arrays.copyOf(elementData, elementCount);        }    }    public synchronized void ensureCapacity(int minCapacity) {        if (minCapacity > 0) {            modCount++;            ensureCapacityHelper(minCapacity);        }    }    private void ensureCapacityHelper(int minCapacity) {        // overflow-conscious code        if (minCapacity - elementData.length > 0)            grow(minCapacity);    }    private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;    private void grow(int minCapacity) {        // overflow-conscious code        int oldCapacity = elementData.length;        int newCapacity = oldCapacity + ((capacityIncrement > 0) ?                                         capacityIncrement : oldCapacity);        if (newCapacity - minCapacity < 0)            newCapacity = minCapacity;        if (newCapacity - MAX_ARRAY_SIZE > 0)            newCapacity = hugeCapacity(minCapacity);        elementData = Arrays.copyOf(elementData, newCapacity);    }    private static int hugeCapacity(int minCapacity) {        if (minCapacity < 0) // overflow            throw new OutOfMemoryError();        return (minCapacity > MAX_ARRAY_SIZE) ?            Integer.MAX_VALUE :            MAX_ARRAY_SIZE;    }    public synchronized void setSize(int newSize) {        modCount++;        if (newSize > elementCount) {            ensureCapacityHelper(newSize);        } else {            for (int i = newSize ; i < elementCount ; i++) {                elementData[i] = null;            }        }        elementCount = newSize;    }    public synchronized int capacity() {        return elementData.length;    }    public synchronized int size() {        return elementCount;    }    public synchronized boolean isEmpty() {        return elementCount == 0;    }    public Enumeration<E> elements() {        return new Enumeration<E>() {            int count = 0;            public boolean hasMoreElements() {                return count < elementCount;            }            public E nextElement() {                synchronized (Vector.this) {                    if (count < elementCount) {                        return elementData(count++);                    }                }                throw new NoSuchElementException("Vector Enumeration");            }        };    }    public boolean contains(Object o) {        return indexOf(o, 0) >= 0;    }    public int indexOf(Object o) {        return indexOf(o, 0);    }    public synchronized int indexOf(Object o, int index) {        if (o == null) {            for (int i = index ; i < elementCount ; i++)                if (elementData[i]==null)                    return i;        } else {            for (int i = index ; i < elementCount ; i++)                if (o.equals(elementData[i]))                    return i;        }        return -1;    }    public synchronized int lastIndexOf(Object o) {        return lastIndexOf(o, elementCount-1);    }    public synchronized int lastIndexOf(Object o, int index) {        if (index >= elementCount)            throw new IndexOutOfBoundsException(index + " >= "+ elementCount);        if (o == null) {            for (int i = index; i >= 0; i--)                if (elementData[i]==null)                    return i;        } else {            for (int i = index; i >= 0; i--)                if (o.equals(elementData[i]))                    return i;        }        return -1;    }    public synchronized E elementAt(int index) {        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);        }        return elementData(index);    }    public synchronized E firstElement() {        if (elementCount == 0) {            throw new NoSuchElementException();        }        return elementData(0);    }    public synchronized E lastElement() {        if (elementCount == 0) {            throw new NoSuchElementException();        }        return elementData(elementCount - 1);    }    public synchronized void setElementAt(E obj, int index) {        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " +                                                     elementCount);        }        elementData[index] = obj;    }    public synchronized void removeElementAt(int index) {        modCount++;        if (index >= elementCount) {            throw new ArrayIndexOutOfBoundsException(index + " >= " +                                                     elementCount);        }        else if (index < 0) {            throw new ArrayIndexOutOfBoundsException(index);        }        int j = elementCount - index - 1;        if (j > 0) {            System.arraycopy(elementData, index + 1, elementData, index, j);        }        elementCount--;        elementData[elementCount] = null; /* to let gc do its work */    }    public synchronized void insertElementAt(E obj, int index) {        modCount++;        if (index > elementCount) {            throw new ArrayIndexOutOfBoundsException(index                                                     + " > " + elementCount);        }        ensureCapacityHelper(elementCount + 1);        System.arraycopy(elementData, index, elementData, index + 1, elementCount - index);        elementData[index] = obj;        elementCount++;    }    public synchronized void addElement(E obj) {        modCount++;        ensureCapacityHelper(elementCount + 1);        elementData[elementCount++] = obj;    }    public synchronized boolean removeElement(Object obj) {        modCount++;        int i = indexOf(obj);        if (i >= 0) {            removeElementAt(i);            return true;        }        return false;    }    public synchronized void removeAllElements() {        modCount++;        // Let gc do its work        for (int i = 0; i < elementCount; i++)            elementData[i] = null;        elementCount = 0;    }    public synchronized Object clone() {        try {            @SuppressWarnings("unchecked")                Vector<E> v = (Vector<E>) super.clone();            v.elementData = Arrays.copyOf(elementData, elementCount);            v.modCount = 0;            return v;        } catch (CloneNotSupportedException e) {            // this shouldn't happen, since we are Cloneable            throw new InternalError(e);        }    }    public synchronized Object[] toArray() {        return Arrays.copyOf(elementData, elementCount);    }    @SuppressWarnings("unchecked")    public synchronized <T> T[] toArray(T[] a) {        if (a.length < elementCount)            return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());        System.arraycopy(elementData, 0, a, 0, elementCount);        if (a.length > elementCount)            a[elementCount] = null;        return a;    }    // Positional Access Operations    @SuppressWarnings("unchecked")    E elementData(int index) {        return (E) elementData[index];    }    public synchronized E get(int index) {        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        return elementData(index);    }    public synchronized E set(int index, E element) {        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        E oldValue = elementData(index);        elementData[index] = element;        return oldValue;    }    public synchronized boolean add(E e) {        modCount++;        ensureCapacityHelper(elementCount + 1);        elementData[elementCount++] = e;        return true;    }    public boolean remove(Object o) {        return removeElement(o);    }    public void add(int index, E element) {        insertElementAt(element, index);    }    public synchronized E remove(int index) {        modCount++;        if (index >= elementCount)            throw new ArrayIndexOutOfBoundsException(index);        E oldValue = elementData(index);        int numMoved = elementCount - index - 1;        if (numMoved > 0)            System.arraycopy(elementData, index+1, elementData, index,                             numMoved);        elementData[--elementCount] = null; // Let gc do its work        return oldValue;    }    public void clear() {        removeAllElements();    }    // Bulk Operations    public synchronized boolean containsAll(Collection<?> c) {        return super.containsAll(c);    }    public synchronized boolean addAll(Collection<? extends E> c) {        modCount++;        Object[] a = c.toArray();        int numNew = a.length;        ensureCapacityHelper(elementCount + numNew);        System.arraycopy(a, 0, elementData, elementCount, numNew);        elementCount += numNew;        return numNew != 0;    }    public synchronized boolean removeAll(Collection<?> c) {        return super.removeAll(c);    }    public synchronized boolean retainAll(Collection<?> c) {        return super.retainAll(c);    }    public synchronized boolean addAll(int index, Collection<? extends E> c) {        modCount++;        if (index < 0 || index > elementCount)            throw new ArrayIndexOutOfBoundsException(index);        Object[] a = c.toArray();        int numNew = a.length;        ensureCapacityHelper(elementCount + numNew);        int numMoved = elementCount - index;        if (numMoved > 0)            System.arraycopy(elementData, index, elementData, index + numNew,                             numMoved);        System.arraycopy(a, 0, elementData, index, numNew);        elementCount += numNew;        return numNew != 0;    }    public synchronized boolean equals(Object o) {        return super.equals(o);    }    public synchronized int hashCode() {        return super.hashCode();    }    public synchronized String toString() {        return super.toString();    }    public synchronized List<E> subList(int fromIndex, int toIndex) {        return Collections.synchronizedList(super.subList(fromIndex, toIndex),                                            this);    }    protected synchronized void removeRange(int fromIndex, int toIndex) {        modCount++;        int numMoved = elementCount - toIndex;        System.arraycopy(elementData, toIndex, elementData, fromIndex,                         numMoved);        // Let gc do its work        int newElementCount = elementCount - (toIndex-fromIndex);        while (elementCount != newElementCount)            elementData[--elementCount] = null;    }    private void readObject(ObjectInputStream in)            throws IOException, ClassNotFoundException {        ObjectInputStream.GetField gfields = in.readFields();        int count = gfields.get("elementCount", 0);        Object[] data = (Object[])gfields.get("elementData", null);        if (count < 0 || data == null || count > data.length) {            throw new StreamCorruptedException("Inconsistent vector internals");        }        elementCount = count;        elementData = data.clone();    }    private void writeObject(java.io.ObjectOutputStream s)            throws java.io.IOException {        final java.io.ObjectOutputStream.PutField fields = s.putFields();        final Object[] data;        synchronized (this) {            fields.put("capacityIncrement", capacityIncrement);            fields.put("elementCount", elementCount);            data = elementData.clone();        }        fields.put("elementData", data);        s.writeFields();    }    public synchronized ListIterator<E> listIterator(int index) {        if (index < 0 || index > elementCount)            throw new IndexOutOfBoundsException("Index: "+index);        return new ListItr(index);    }    public synchronized ListIterator<E> listIterator() {        return new ListItr(0);    }    public synchronized Iterator<E> iterator() {        return new Itr();    }    private class Itr implements Iterator<E> {        int cursor;       // index of next element to return        int lastRet = -1; // index of last element returned; -1 if no such        int expectedModCount = modCount;        public boolean hasNext() {            // Racy but within spec, since modifications are checked            // within or after synchronization in next/previous            return cursor != elementCount;        }        public E next() {            synchronized (Vector.this) {                checkForComodification();                int i = cursor;                if (i >= elementCount)                    throw new NoSuchElementException();                cursor = i + 1;                return elementData(lastRet = i);            }        }        public void remove() {            if (lastRet == -1)                throw new IllegalStateException();            synchronized (Vector.this) {                checkForComodification();                Vector.this.remove(lastRet);                expectedModCount = modCount;            }            cursor = lastRet;            lastRet = -1;        }        @Override        public void forEachRemaining(Consumer<? super E> action) {            Objects.requireNonNull(action);            synchronized (Vector.this) {                final int size = elementCount;                int i = cursor;                if (i >= size) {                    return;                }        @SuppressWarnings("unchecked")                final E[] elementData = (E[]) Vector.this.elementData;                if (i >= elementData.length) {                    throw new ConcurrentModificationException();                }                while (i != size && modCount == expectedModCount) {                    action.accept(elementData[i++]);                }                // update once at end of iteration to reduce heap write traffic                cursor = i;                lastRet = i - 1;                checkForComodification();            }        }        final void checkForComodification() {            if (modCount != expectedModCount)                throw new ConcurrentModificationException();        }    }    /**     * An optimized version of AbstractList.ListItr     */    final class ListItr extends Itr implements ListIterator<E> {        ListItr(int index) {            super();            cursor = index;        }        public boolean hasPrevious() {            return cursor != 0;        }        public int nextIndex() {            return cursor;        }        public int previousIndex() {            return cursor - 1;        }        public E previous() {            synchronized (Vector.this) {                checkForComodification();                int i = cursor - 1;                if (i < 0)                    throw new NoSuchElementException();                cursor = i;                return elementData(lastRet = i);            }        }        public void set(E e) {            if (lastRet == -1)                throw new IllegalStateException();            synchronized (Vector.this) {                checkForComodification();                Vector.this.set(lastRet, e);            }        }        public void add(E e) {            int i = cursor;            synchronized (Vector.this) {                checkForComodification();                Vector.this.add(i, e);                expectedModCount = modCount;            }            cursor = i + 1;            lastRet = -1;        }    }    @Override    public synchronized void forEach(Consumer<? super E> action) {        Objects.requireNonNull(action);        final int expectedModCount = modCount;        @SuppressWarnings("unchecked")        final E[] elementData = (E[]) this.elementData;        final int elementCount = this.elementCount;        for (int i=0; modCount == expectedModCount && i < elementCount; i++) {            action.accept(elementData[i]);        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }    }    @Override    @SuppressWarnings("unchecked")    public synchronized boolean removeIf(Predicate<? super E> filter) {        Objects.requireNonNull(filter);        // figure out which elements are to be removed        // any exception thrown from the filter predicate at this stage        // will leave the collection unmodified        int removeCount = 0;        final int size = elementCount;        final BitSet removeSet = new BitSet(size);        final int expectedModCount = modCount;        for (int i=0; modCount == expectedModCount && i < size; i++) {            @SuppressWarnings("unchecked")            final E element = (E) elementData[i];            if (filter.test(element)) {                removeSet.set(i);                removeCount++;            }        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        // shift surviving elements left over the spaces left by removed elements        final boolean anyToRemove = removeCount > 0;        if (anyToRemove) {            final int newSize = size - removeCount;            for (int i=0, j=0; (i < size) && (j < newSize); i++, j++) {                i = removeSet.nextClearBit(i);                elementData[j] = elementData[i];            }            for (int k=newSize; k < size; k++) {                elementData[k] = null;  // Let gc do its work            }            elementCount = newSize;            if (modCount != expectedModCount) {                throw new ConcurrentModificationException();            }            modCount++;        }        return anyToRemove;    }    @Override    @SuppressWarnings("unchecked")    public synchronized void replaceAll(UnaryOperator<E> operator) {        Objects.requireNonNull(operator);        final int expectedModCount = modCount;        final int size = elementCount;        for (int i=0; modCount == expectedModCount && i < size; i++) {            elementData[i] = operator.apply((E) elementData[i]);        }        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        modCount++;    }    @SuppressWarnings("unchecked")    @Override    public synchronized void sort(Comparator<? super E> c) {        final int expectedModCount = modCount;        Arrays.sort((E[]) elementData, 0, elementCount, c);        if (modCount != expectedModCount) {            throw new ConcurrentModificationException();        }        modCount++;    }    @Override    public Spliterator<E> spliterator() {        return new VectorSpliterator<>(this, null, 0, -1, 0);    }    /** Similar to ArrayList Spliterator */    static final class VectorSpliterator<E> implements Spliterator<E> {        private final Vector<E> list;        private Object[] array;        private int index; // current index, modified on advance/split        private int fence; // -1 until used; then one past last index        private int expectedModCount; // initialized when fence set        /** Create new spliterator covering the given  range */        VectorSpliterator(Vector<E> list, Object[] array, int origin, int fence,                          int expectedModCount) {            this.list = list;            this.array = array;            this.index = origin;            this.fence = fence;            this.expectedModCount = expectedModCount;        }        private int getFence() { // initialize on first use            int hi;            if ((hi = fence) < 0) {                synchronized(list) {                    array = list.elementData;                    expectedModCount = list.modCount;                    hi = fence = list.elementCount;                }            }            return hi;        }        public Spliterator<E> trySplit() {            int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;            return (lo >= mid) ? null :                new VectorSpliterator<E>(list, array, lo, index = mid,                                         expectedModCount);        }        @SuppressWarnings("unchecked")        public boolean tryAdvance(Consumer<? super E> action) {            int i;            if (action == null)                throw new NullPointerException();            if (getFence() > (i = index)) {                index = i + 1;                action.accept((E)array[i]);                if (list.modCount != expectedModCount)                    throw new ConcurrentModificationException();                return true;            }            return false;        }        @SuppressWarnings("unchecked")        public void forEachRemaining(Consumer<? super E> action) {            int i, hi; // hoist accesses and checks from loop            Vector<E> lst; Object[] a;            if (action == null)                throw new NullPointerException();            if ((lst = list) != null) {                if ((hi = fence) < 0) {                    synchronized(lst) {                        expectedModCount = lst.modCount;                        a = array = lst.elementData;                        hi = fence = lst.elementCount;                    }                }                else                    a = array;                if (a != null && (i = index) >= 0 && (index = hi) <= a.length) {                    while (i < hi)                        action.accept((E) a[i++]);                    if (lst.modCount == expectedModCount)                        return;                }            }            throw new ConcurrentModificationException();        }        public long estimateSize() {            return (long) (getFence() - index);        }        public int characteristics() {            return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;        }    }}

HashSet简介

HashSet的特点

无序性(存储元素无序) 唯一性(允许使用null) 本质上,HashSet底层是通过HashMap来保证唯一性 HashSet没有提供get()方法,同HashMap一样,因为Set内部是无序的,所以只能通过迭代的方式获得

HashSet的继承体系

HashSet源码分析

1. 属性(成员变量)

// HashSet内部使用HashMap来存储元素,因此本质上是HashMapprivate transient HashMap<E,Object> map;// 虚拟对象,用来作为value放到map中(在HashSet底层的HashMap中,key为要存储的元素,value统一为PRESENT)private static final Object PRESENT = new Object();

2. 构造方法

public HashSet() {    map = new HashMap<>();}public HashSet(Collection<? extends E> c) {    map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));    addAll(c);}public HashSet(int initialCapacity, float loadFactor) {    map = new HashMap<>(initialCapacity, loadFactor);}public HashSet(int initialCapacity) {    map = new HashMap<>(initialCapacity);}// 注意:这里未用public修饰,主要是给LinkedHashSet使用的HashSet(int initialCapacity, float loadFactor, boolean dummy) {    map = new LinkedHashMap<>(initialCapacity, loadFactor);}

构造方法都是调用HashMap对应的构造方法。最后一个构造方法有点特殊,它不是public的,意味着它只能被同一个包或者子类调用,这是LinkedHashSet专属的方法。

3. 成员方法

3.1 添加元素add(E e)

// HashSet添加元素的时候,直接调用的是HashMap中的put()方法,// 把元素本身作为key,把PRESENT作为value,也就是这个map中所有的value都是一样的。public boolean add(E e) {    return map.put(e, PRESENT)==null;}

3.2 删除元素remove(Object o)

// HashSet删除元素,直接调用HashMap的remove方法public boolean remove(Object o) {    // 注意:map的remove返回是删除元素的value,而Set的remov返回的是boolean类型    // 如果是null的话说明没有该元素,如果不是null肯定等于PRESENT    return map.remove(o)==PRESENT;}

3.3 查找元素contains(Object o)

// Set中没有get()方法,不像List那样可以按index获取元素public boolean contains(Object o) {    return map.containsKey(o);}

4. 完整代码

HashSet是基于HashMap的,所以其源码较少:

package java.util;import java.io.InvalidObjectException;import sun.misc.SharedSecrets;public class HashSet<E>    extends AbstractSet<E>    implements Set<E>, Cloneable, java.io.Serializable{    static final long serialVersionUID = -5024744406713321676L;    // 内部元素存储在HashMap中    private transient HashMap<E,Object> map;    // 虚拟元素,用来存到map元素的value中的,没有实际意义    private static final Object PRESENT = new Object();    // 空构造方法    public HashSet() {        map = new HashMap<>();    }    // 把另一个集合的元素全都添加到当前Set中    // 注意,这里初始化map的时候是计算了它的初始容量的    public HashSet(Collection<? extends E> c) {        map = new HashMap<>(Math.max((int) (c.size()/.75f) + 1, 16));        addAll(c);    }    // 指定初始容量和装载因子    public HashSet(int initialCapacity, float loadFactor) {        map = new HashMap<>(initialCapacity, loadFactor);    }    // 只指定初始容量    public HashSet(int initialCapacity) {        map = new HashMap<>(initialCapacity);    }    // LinkedHashSet专用的方法    // dummy是没有实际意义的, 只是为了跟上上面那个操持方法签名不同而已    HashSet(int initialCapacity, float loadFactor, boolean dummy) {        map = new LinkedHashMap<>(initialCapacity, loadFactor);    }    // 迭代器    public Iterator<E> iterator() {        return map.keySet().iterator();    }    // 元素个数    public int size() {        return map.size();    }    // 检查是否为空    public boolean isEmpty() {        return map.isEmpty();    }    // 检查是否包含某个元素    public boolean contains(Object o) {        return map.containsKey(o);    }    // 添加元素    public boolean add(E e) {        return map.put(e, PRESENT)==null;    }    // 删除元素    public boolean remove(Object o) {        return map.remove(o)==PRESENT;    }    // 清空所有元素    public void clear() {        map.clear();    }    // 克隆方法    @SuppressWarnings("unchecked")    public Object clone() {        try {            HashSet<E> newSet = (HashSet<E>) super.clone();            newSet.map = (HashMap<E, Object>) map.clone();            return newSet;        } catch (CloneNotSupportedException e) {            throw new InternalError(e);        }    }    // 序列化写出方法    private void writeObject(java.io.ObjectOutputStream s)        throws java.io.IOException {        // 写出非static非transient属性        s.defaultWriteObject();        // 写出map的容量和装载因子        s.writeInt(map.capacity());        s.writeFloat(map.loadFactor());        // 写出元素个数        s.writeInt(map.size());        // 遍历写出所有元素        for (E e : map.keySet())            s.writeObject(e);    }    // 序列化读入方法    private void readObject(java.io.ObjectInputStream s)        throws java.io.IOException, ClassNotFoundException {        // 读入非static非transient属性        s.defaultReadObject();        // 读入容量, 并检查不能小于0        int capacity = s.readInt();        if (capacity < 0) {            throw new InvalidObjectException("Illegal capacity: " +                                             capacity);        }        // 读入装载因子, 并检查不能小于等于0或者是NaN(Not a Number)        // java.lang.Float.NaN = 0.0f / 0.0f;        float loadFactor = s.readFloat();        if (loadFactor <= 0 || Float.isNaN(loadFactor)) {            throw new InvalidObjectException("Illegal load factor: " +                                             loadFactor);        }        // 读入元素个数并检查不能小于0        int size = s.readInt();        if (size < 0) {            throw new InvalidObjectException("Illegal size: " +                                             size);        }        // 根据元素个数重新设置容量        // 这是为了保证map有足够的容量容纳所有元素, 防止无意义的扩容        capacity = (int) Math.min(size * Math.min(1 / loadFactor, 4.0f),                HashMap.MAXIMUM_CAPACITY);        // 再次检查某些东西, 不重要的代码忽视掉        SharedSecrets.getJavaOISAccess()                     .checkArray(s, Map.Entry[].class, HashMap.tableSizeFor(capacity));        // 创建map, 检查是不是LinkedHashSet类型        map = (((HashSet<?>)this) instanceof LinkedHashSet ?               new LinkedHashMap<E,Object>(capacity, loadFactor) :               new HashMap<E,Object>(capacity, loadFactor));        // 读入所有元素, 并放入map中        for (int i=0; i<size; i++) {            @SuppressWarnings("unchecked")                E e = (E) s.readObject();            map.put(e, PRESENT);        }    }    // 可分割的迭代器, 主要用于多线程并行迭代处理时使用    public Spliterator<E> spliterator() {        return new HashMap.KeySpliterator<E,Object>(map, 0, -1, 0, 0);    }}

小结

HashSet内部使用HashMap的key存储元素,以此来保证元素不重复; HashSet是无序的,因为HashMap的key是无序的; HashSet中允许有一个null元素,因为HashMap允许key为null; HashSet是非线程安全的;HashSet是没有get()方法的;

扩展:

当向HashMap中存储n个元素时,它的初始化容量应指定为:((n/0.75f) + 1),如果这个值小于16,就直接使用16为容量。初始化时指定容量是为了减少扩容的次数,提高效率。

LinkedHashSet分析

package java.util;// LinkedHashSet继承自HashSetpublic class LinkedHashSet<E>    extends HashSet<E>    implements Set<E>, Cloneable, java.io.Serializable {    private static final long serialVersionUID = -2851667679971038690L;    // 传入容量和装载因子    public LinkedHashSet(int initialCapacity, float loadFactor) {        super(initialCapacity, loadFactor, true);    }    // 只传入容量, 装载因子默认为0.75    public LinkedHashSet(int initialCapacity) {        super(initialCapacity, .75f, true);    }    // 使用默认容量16, 默认装载因子0.75    public LinkedHashSet() {        super(16, .75f, true);    }    // 将集合c中的所有元素添加到LinkedHashSet中    // 好奇怪, 这里计算容量的方式又变了    // HashSet中使用的是Math.max((int) (c.size()/.75f) + 1, 16)    // 这一点有点不得其解, 是作者偷懒?    public LinkedHashSet(Collection<? extends E> c) {        super(Math.max(2*c.size(), 11), .75f, true);        addAll(c);    }    // 可分割的迭代器, 主要用于多线程并行迭代处理时使用    @Override    public Spliterator<E> spliterator() {        return Spliterators.spliterator(this, Spliterator.DISTINCT | Spliterator.ORDERED);    }}

LinkedHashSet继承自HashSet,它的添加、删除、查询等方法都是直接用的HashSet的,唯一的不同就是它使用LinkedHashMap存储元素。 LinkedHashSet是有序的,它是按照插入的顺序排序的。 LinkedHashSet是不支持按访问顺序对元素排序的,只能按插入顺序排序。

因为,LinkedHashSet所有的构造方法都是调用HashSet的同一个构造方法,如下:

// HashSet的构造方法    HashSet(int initialCapacity, float loadFactor, boolean dummy) {        map = new LinkedHashMap<>(initialCapacity, loadFactor);    }

通过调用LinkedHashMap的构造方法初始化map,如下所示:

    public LinkedHashMap(int initialCapacity, float loadFactor) {        super(initialCapacity, loadFactor);        accessOrder = false;    }

总结

这样可以看到,这里把accessOrder写死为false了,所以,LinkedHashSet是不支持按访问顺序对元素排序的,只能按插入顺序排序。还请大家多多关注的其他文章!

怎么能研究出炸药呢?爱迪生不经历上千次的来自失败,怎么能发明电灯呢?

JDK源码之Vector与HashSet解析

相关文章:

你感兴趣的文章:

标签云: