多位数加法器

    1.串行进位加法器
    若有多位数相加,则可采用并行相加串行进位的方式来完成。例如,有两个4位二进制数A3A2A1A0和B3B2B1B0相加,可以采用两片内含两个全加器或1片内含4个全加器的组成,其原理图如图1所示。由图可以看出,每1位的进位信号送给下1位作为输入信号,因此,任1位的加法运算必须在低1位的运算完成之后进行,这种进位方式称为串行进位。这种加法器的逻辑电路比较简单,但它的运算速度不高。为克服这一缺点,可以采用超前进位等方式。
,    2.超前进位集成4位加法器74LS283
    由于串行进位加法器的速度受到进位信号的限制,人们又设计了一种多位数超前进位加法逻辑电路,使每位的进位只由加数和被加数决定,而与低位的进位无关。现在介绍超前进位的概念。 由表1得Si和Ci的逻辑表达式
,    1.串行进位加法器
    若有多位数相加,则可采用并行相加串行进位的方式来完成。例如,有两个4位二进制数A3A2A1A0和B3B2B1B0相加,可以采用两片内含两个全加器或1片内含4个全加器的组成,其原理图如图1所示。由图可以看出,每1位的进位信号送给下1位作为输入信号,因此,任1位的加法运算必须在低1位的运算完成之后进行,这种进位方式称为串行进位。这种加法器的逻辑电路比较简单,但它的运算速度不高。为克服这一缺点,可以采用超前进位等方式。

图1 4位串行进位全加器

    2.超前进位集成4位加法器74LS283
    由于串行进位加法器的速度受到进位信号的限制,人们又设计了一种多位数超前进位加法逻辑电路,使每位的进位只由加数和被加数决定,而与低位的进位无关。现在介绍超前进位的概念。 由表1得Si和Ci的逻辑表达式

    定义两个中间变量Gi和Pi: Gi=AiBi
  Pi=AiBi

    当Ai=Bi=1时,Gi=1,由Ci的逻辑表达式得Ci=1,即产生进位,所以Gi称为产生变量。若Pi=1,则AiBi=0,由Ci的逻辑表达式得Ci=Ci-1,即Pi=1时,低位的进位能传送到高位的进位输出端,故Pi称为传输变量。这两个变量都与进位信号无关。将Gi和Pi 代入以上两式得:

    由上式得各位进位信号的逻辑表达式如下:

    由此可知,因为进位信号只与变量Gi、Pi和C-1有关,而C-1是向最低位的进位信号,其值为0,所以各位的进位信号都只与两个加 数有关,它们是可以并行产生的。 根据超前进位概念构成的集成4位加法器74LS283的逻辑图和引脚图分别如图5.6.5(a)和图5.6.5(b)所示。 根据以上表达式可以写出S0~S3的表达式。例如

 
 

    经变换和化简得:
    同理可推导出S0、S2、S3和CO(C3)的表达式。
    图2 集成4位加法器74LS283
(a)逻辑图 (b)引脚图
    3.超前进位产生器74182
    多位数的超前进位加法器的进位是并行产生的,大大提高了运算速度。但是,随着位数的增加,超前进位逻辑电路越来越复杂。为了解决这一矛盾,设计出了专用的超前进位产生器,用多个超前进位产生器连接,既可扩充位数而又不使逻辑电路太复杂。集成超前进位产生器74182的逻辑图和引脚图分别如图3(a)和3(b)所示。
    由图3可以对74182的引出端信号说明如下:
    74182的输入、输出信号有进位输入端Cn,进位输出端Cn+x、Cn+y、Cn+z,进位产生输出端FG(低电平有效),进位传输输出端FP(低电平有效),进位产生输入端G0~G3(低电平有效),进位传输输入端P0~P3(低电平有效)。
    74182的逻辑功能如表3(a)~(e)所示

表1(a) 74182F G输出功能表
输 入 输 出
G3 G2 G1 G0 P3 P2 P1 FG
L × × × × × × L
× L × × L × × L
× × L × L L × L
× × × L L L L L
所有其他组合 H
表1(b) 74182F P输出功能表
输 入 输 出
P3 P2 P1 P0 FP
L L L L L
所有其他组合 H
表1(c) 74182C n+x输出功能表
输 入 输 出
G0 P0 Cn Cn+x
L × × H
× L H H
所有其他组合 L
表1(d) 74182C n+y输出功能表
输 入 输 出
G1 G0 P1 P0 Cn Cn+y
L × × × × H
× L L × × H
× × L L H H
所有其他组合 L
表1(e) 74182C n+z输出功能表
输 入 输 出
G2 G1 G0 P2 P1 P0 Cn Cn+z
L × × × × × × H
× L × L × × × H
× × L L L × × H
× × × L L L H H
所有其他组合 L

     图3 集成超前进位产生器74182(a)逻辑图(b)引脚图
    由图3(a)可得

    

    上式与功能表一致,Cn+x、Cn+y、Cn+z为各位的进位信号,Pi、Gi为低电平有效,Cn是向最低位的进位信号。FP和FG可以用来实现多个超前进位产生器连接,这样既可以扩充位数,而又不使逻辑电路太复杂。具体连接方法见4
    
图4 16位全超前进位算术/逻辑运算电路

多位数加法器

相关文章:

你感兴趣的文章:

标签云: