3.3V-5V电平转换电路

  如上图,左端接3.3VCMOS电平,可以是STM32、FPGA等的IO口,右端输出为5V电平,实现3.3V到5V电平的转换。

  现在来分析下各个电阻的作用(抓住的核心思路是的Vbe导通时为恒定值0.7V左右):

  假设没有R87,则当US_CH0的高电平直接加在三极管的BE上,>0.7V的电压要到哪里去呢?

  假设没有R91,当US_CH0电平状态不确定时,默认是要Trig输出高电平还是低电平呢?因此R91起到固定电平的作用。同时,如果无R91,则只要输入>0.7V就导通三极管,门槛电压太低了,R91有提升门槛电压的作用(可参见第二小节关于蜂鸣器的分析)。

  但是,加了R91又要注意了:R91如果太小,基极电压近似

  只有Vb>0.7V时才能使US_CH0为高电平时导通,上图的Vb=1.36V

  假设没有R83,当输入US_CH0为高电平(三极管导通时),D5V0(5V高电平)直接加在三极管的CE级,而三极管的CE,三极管很容易就损坏了。

  再进一步分析其工作机理:

  当输入为高电平,三极管导通,输出钳制在三极管的Vce,对电路测试结果仅0.1V

  当输入为低电平,三极管不导通,输出相当于对下一级电路的输入使用10K电阻进行上拉,实际测试结果为5.0V(空载)

  请注意:

  对于大电流的负载,上面电路的特性将表现的不那么好,因此这里一直强调——该电路仅适用于10几mA到几十mA的负载的电平转换。

,

  如上图,左端接3.3VCMOS电平,可以是STM32、FPGA等的IO口,右端输出为5V电平,实现3.3V到5V电平的转换。

  现在来分析下各个电阻的作用(抓住的核心思路是的Vbe导通时为恒定值0.7V左右):

  假设没有R87,则当US_CH0的高电平直接加在三极管的BE上,>0.7V的电压要到哪里去呢?

  假设没有R91,当US_CH0电平状态不确定时,默认是要Trig输出高电平还是低电平呢?因此R91起到固定电平的作用。同时,如果无R91,则只要输入>0.7V就导通三极管,门槛电压太低了,R91有提升门槛电压的作用(可参见第二小节关于蜂鸣器的分析)。

  但是,加了R91又要注意了:R91如果太小,基极电压近似

  只有Vb>0.7V时才能使US_CH0为高电平时导通,上图的Vb=1.36V

  假设没有R83,当输入US_CH0为高电平(三极管导通时),D5V0(5V高电平)直接加在三极管的CE级,而三极管的CE,三极管很容易就损坏了。

  再进一步分析其工作机理:

  当输入为高电平,三极管导通,输出钳制在三极管的Vce,对电路测试结果仅0.1V

  当输入为低电平,三极管不导通,输出相当于对下一级电路的输入使用10K电阻进行上拉,实际测试结果为5.0V(空载)

  请注意:

  对于大电流的负载,上面电路的特性将表现的不那么好,因此这里一直强调——该电路仅适用于10几mA到几十mA的负载的电平转换。

3.3V-5V电平转换电路

相关文章:

你感兴趣的文章:

标签云: