原码反码补码ppt,二进制的原码、反码、补码、移码
原码反码补码ppt,二进制的原码、反码、补码、移码详细介绍
本文目录一览: 原码,反码,补码,是什么?
所谓原码就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
原码10010= 反码11101 (10010,1为符号码,故为负)
(11101) 二进制= -13 十进制
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
以上答案来自百科
这种计算机方面的概念听起来可能稍微难以理解
你可以只去记住原码,补码和反码的转换方法~
带符号数,有三种表示方法,即:原码、反码和补码。
但是,在计算机系统中,数值一律用【补码】来表示和存储。
所以,在计算机系统中,原码和反码,都是不存在的。
使用补码的意义:可以把减法或负数,转换为加法运算。
因此,就能简化计算机的硬件。
=====================
补码的概念,来自于:补数。
比如钟表,时针转一圈,周期是 12 小时。
那么,倒拨 3 小时,可以用正拨 9 小时代替。
9,就是-3 的补数。 计算方法: 9 = 12-3。
同理,分针倒拨 X 分,可以用正拨(60-X) 代替。
60,是分针的周期。
同理,三角函数的周期是 2π。 那么,
在-π/2 处 的函数值,就与 2π-π/2 = +3π/2 处 相同。
------------
当你使用两位十进制数:0~99,周期就是 一百。
那么,减一,就可以用 +99 代替。
24-1 = 23
24 + 99 = (1) 23
舍弃进位,这两种算法,功能就是相同的。
于是,99 就是 -1 的补数。
其它负数的补数,可以按照下式来求:
补数 = 周期 + 负数
------------
计算机中使用二进制,补数,就改称为【补码】。
八位二进制是:0000 0000~1111 1111。
相当于十进制:0~255, 周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128 的补码,就是 1000 0000 = 128。
负数补码的计算公式:【 256 + 这个负数 】。
(式中的 256 = 2^8,是八位二进制的周期。)
正数,直接运算就可以,并不存在补码的问题。
所以,正数,并不用求补码。
(也有人乱说:正数本身就是补码。)
------------
求解算式: 7-3 = 4。
计算机中,并没有减法器,必须改用补码相加。
列竖式如下:
7 的补码=0000 0111
-3的补码=1111 1101
--相加-------------
得: (1) 0000 0100 = 4 的补码
舍弃进位,只保留八位,结果完全正确。
------------
借助于补码,可以简化计算机的硬件。
原码和反码,并没有这种功能。
所以,在计算机中,根本就没有它们。
它们都是什么? 就不用关心了。
计算机的原码,反码,补码是怎么回事?可以举例说明吗?
原码、反码和补码是计算机中对数字二进制的三种表示方法。
1、原码
原码(trueform)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。
例如:用8位二进制表示一个数,+11的原码为00001011,-11的原码就是10001011。
2、反码
反码是数值存储的一种,多应用于系统环境设置,如linux平台的目录和文件的默认权限的设置umask,就是使用反码原理。反码的表示方法是:正数的反码与其原码相同;负数的反码是对正数逐位取反,符号位保持为1。
例如:
[+7]反=00000111B;
[-7]反=11111000B。
3、补码
正数:正数的补码和原码相同。负数:负数的补码则是符号位为“1”。并且,这个“1”既是符号位,也是数值位。数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。
例如:
[+7]补=00000111B;
[-7]补=11111001B。
扩展资料
原码、反码、补码的转换方法如下:
(1)已知原码,求补码。
例:已知某数X的原码为10110100B,试求X的补码和反码。
首先通过原码的首位确定该数字的正负,若为正数,反码与原码相同,补码比原码在末尾加1;若为负数,求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
(2)已知补码,求原码。
按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1的方法。
参考资料来源:百度百科-反码
参考资料来源:百度百科-补码
参考资料来源:百度百科-原码
什么是原码,反码,补码,和反补码?
请我给你的详解:
原码、补码和反码
(1)原码表示法
原码表示法是机器数的一种简单的表示法。其符号位用0表示正号,用:表示负号,数值一般用二进制形式表示。设有一数为x,则原码表示可记作〔x〕原。
例如,X1= +1010110
X2= 一1001010
其原码记作:
〔X1〕原=[+1010110]原=01010110
〔X2〕原=[-1001010]原=11001010
原码表示数的范围与二进制位数有关。当用8位二进制来表示小数原码时,其表示范围:
最大值为0.1111111,其真值约为(0.99)10
最小值为1.1111111,其真值约为(一0.99)10
当用8位二进制来表示整数原码时,其表示范围:
最大值为01111111,其真值为(127)10
最小值为11111111,其真值为(-127)10
在原码表示法中,对0有两种表示形式:
〔+0〕原=00000000
[-0] 原=10000000
(2)补码表示法
机器数的补码可由原码得到。如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加1而得到的。设有一数X,则X的补码表示记作〔X〕补。
例如,[X1]=+1010110
[X2]= 一1001010
[X1]原=01010110
[X1]补=01010110
即 [X1]原=[X1]补=01010110
[X2] 原= 11001010
[X2] 补=10110101+1=10110110
补码表示数的范围与二进制位数有关。当采用8位二进制表示时,小数补码的表示范围:
最大为0.1111111,其真值为(0.99)10
最小为1.0000000,其真值为(一1)10
采用8位二进制表示时,整数补码的表示范围:
最大为01111111,其真值为(127)10
最小为10000000,其真值为(一128)10
在补码表示法中,0只有一种表示形式:
[+0]补=00000000
[+0]补=11111111+1=00000000(由于受设备字长的限制,最后的进位丢失)
所以有[+0]补=[+0]补=00000000
(3)反码表示法
机器数的反码可由原码得到。如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的。设有一数X,则X的反码表示记作〔X〕反。
例如:X1= +1010110
X2= 一1001010
〔X1〕原=01010110
[X1]反=〔X1〕原=01010110
[X2]原=11001010
[X2]反=10110101
反码通常作为求补过程的中间形式,即在一个负数的反码的未位上加1,就得到了该负数的补码。
例1. 已知[X]原=10011010,求[X]补。
分析如下:
由[X]原求[X]补的原则是:若机器数为正数,则[X]原=[X]补;若机器数为负数,则该机器数的补码可对它的原码(符号位除外)所有位求反,再在未位加1而得到。现给定的机器数为负数,故有[X]补=[X]原十1,即
[X]原=10011010
[X]反=11100101
十) 1
[X]补=11100110
例2. 已知[X]补=11100110,求〔X〕原。
分析如下:
对于机器数为正数,则〔X〕原=〔X〕补
对于机器数为负数,则有〔X〕原=〔〔X〕补〕补
现给定的为负数,故有:
〔X〕补=11100110
〔〔X〕补〕反=10011001
十) 1
〔〔X〕补〕补=10011010=〔X〕原
或者说:
数在计算机中是以二进制形式表示的。
数分为有符号数和无符号数。
原码、反码、补码都是有符号定点数的表示方法。
一个有符号定点数的最高位为符号位,0是正,1是副。
以下都以8位整数为例,
原码就是这个数本身的二进制形式。
例如
0000001 就是+1
1000001 就是-1
正数的反码和补码都是和原码相同。
负数的反码是将其原码除符号位之外的各位求反
[-3]反=[10000011]反=11111100
负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。
[-3]补=[10000011]补=11111101
一个数和它的补码是可逆的。
为什么要设立补码呢?
第一是为了能让计算机执行减法:
[a-b]补=a补+(-b)补
第二个原因是为了统一正0和负0
正零:00000000
负零:10000000
这两个数其实都是0,但他们的原码却有不同的表示。
但是他们的补码是一样的,都是00000000
特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!)
[10000000]补
=[10000000]反+1
=11111111+1
=(1)00000000
=00000000(最高位溢出了,符号位变成了0)
有人会问
10000000这个补码表示的哪个数的补码呢?
其实这是一个规定,这个数表示的是-128
所以n位补码能表示的范围是
-2^(n-1)到2^(n-1)-1
比n位原码能表示的数多一个
又例:
1011
原码:01011
反码:01011 //正数时,反码=原码
补码:01011 //正数时,补码=原码
-1011
原码:11011
反码:10100 //负数时,反码为原码取反
补码:10101 //负数时,补码为原码取反+1
0.1101
原码:0.1101
反码:0.1101 //正数时,反码=原码
补码:0.1101 //正数时,补码=原码
-0.1101
原码:1.1101
反码:1.0010 //负数时,反码为原码取反
补码:1.0011 //负数时,补码为原码取反+1
在计算机内,定点数有3种表示法:原码、反码和补码
所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为:
00000000 00000000 00000000 00000101
5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。
现在想知道,-5在计算机中如何表示?
在计算机中,负数以其正值的补码形式表达。
什么叫补码呢?这得从原码,反码说起。
原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。
比如 00000000 00000000 00000000 00000101 是 5的 原码。
反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。
取反操作指:原为1,得0;原为0,得1。(1变0; 0变1)
比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。
称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。
反码是相互的,所以也可称:
11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。
补码:反码加1称为补码。
也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。
比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。
那么,补码为:
11111111 11111111 11111111 11111010 1 = 11111111 11111111 11111111 11111011
所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。转换为十六进制:0xFFFFFFFB。
再举一例,我们来看整数-1在计算机中如何表示。
假设这也是一个int类型,那么:
1、先取1的原码:00000000 00000000 00000000 00000001
2、得反码: 11111111 11111111 11111111 11111110
3、得补码: 11111111 11111111 11111111 11111111
正数的原码,补码,反码都相同,都等于它本身
负数的补码是:符号位为1,其余各位求反,末位加1
反码是:符号位为1,其余各位求反,但末位不加1
也就是说,反码末位加上1就是补码
1100110011 原
1011001100 反 除符号位,按位取反
1011001101 补 除符号位,按位取反再加1
正数的原反补是一样的
在计算机中,数据是以补码的形式存储的:
在n位的机器数中,最高位为符号位,该位为零表示为正,为1表示为负;
其余n-1位为数值位,各位的值可为0或1。
当真值为正时:原码、反码、补码数值位完全相同;
当真值为负时: 原码的数值位保持原样,
反码的数值位是原码数值位的各位取反,
补码则是反码的最低位加一。
注意符号位不变。
如:若机器数是16位:
十进制数 17 的原码、反码与补码均为: 0000000000010001
十进制数-17 的原码、反码与补码分别为:1000000000010001、1111111111101110、1111111111101111
原码、反码、补码的产生、应用以及优缺点有哪些?
计算机系统中,数值,一律用补码表示和存储。
在计算机中,都是正数,并没有负数。
那么,负数,又怎么表示呢?
想想时钟吧:
倒拨 3 小时,可以用正拨 9 小时来代替。
倒拨 X 分,可以用 (60-X) 分来代替。
这里面,有个“周期”,分别是:12、60。
学过三角函数的同学,都知道,2π 是周期。
-π/2 处的函数值,也与+3π/2 (即:2π-π/2) 处相同。
利用周期,就可以求出“负数的补数”,用来代替负数。
(求出的补数,实际上是一个正数。)
那么,减法,也就可以用“加法器”来运算。
采用补码的意义,就是:简化了硬件。
计算机用二进制,补数,就称为补码。
八位二进制是:0000 0000~1111 1111(十进制 255)。
周期就是 256 = 2^8。
-1 的补码就是 256-1 = 255 (二进制 1111 1111)。
-2 的补码就是 256-2 = 254 (二进制 1111 1110)。
。。。
计算机系统中,数值,一律用补码表示和存储。
在计算机中,原码、反码,都不存在。
原码反码所具有的,都是缺点,没有任何优点,就不必讨论了。
1、 原码:是机器数的一种简单的表示法。其符号位用0表示正号,用1表示负号,数值一般用二进制形式表示。
优点:最简单直观。
缺点:不能直接参加运算,可能会出错。
原码来历:在机器中,只能识别二进制数字,所以所以的数字都用原码来表示。
2、 反码:可由原码得到。如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的。
优点:解决负数加法运算问题,将减法运算转换为加法运算,从而简化运算规则。
缺点:没有缺点
反码来历:为了解决“正负相加等于0”的问题,在“原码”的基础上,人们发明了“反码”
3、 补码:可由原码得到。如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加1而得到的
优点:可以把负数直接拿来算加法。
缺点:容易忘记公式,计算错误。
补码来历:计算机里面,只有加法器,没有减法器,所有的减法运算,都必须用加法进行,用补数代替原数,可把减法转变为加法。
4、 在计算机中为什么要使用补码:由于原码和反码中,+0与-0的表示并不相同,所以计算机中一般使用补码。其实还有一个更重要的作用,就是利用高位溢出,将减法运算变成加法。
原码、反码、补码的基本概念
带符号数,有三种表示方法,即:原码、反码和补码。
但是,在计算机系统中,数值一律用补码来表示和存储。
所以,在计算机系统中,原码和反码,都是不存在的。
使用补码的意义:可以把减法或负数,转换为加法运算。
从而简化计算机的硬件。
=====================
补码的概念,来自于:补数。
比如钟表,时针转一圈,周期是 12 小时。
那么,倒拨 3 小时,可以用正拨 9 小时代替。
9,就是-3 的补数。 计算方法:9 = 12-3。
同理,分针倒拨 X 分,可以用正拨(60-X) 代替。
60,是分针的周期。
同理,三角函数的周期是 2π。 那么,
在-π/2 处 的函数值,就与(2π-π/2)= +3π/2 处 相同。
------------
使用两位十进制数:0~99,周期就是 一百。
那么,减一,就可以用 +99 代替。
24-1 = 23
24 + 99 = (1) 23
舍弃进位,这两种算法,功能就是相同的。
于是,99 就是 -1 的补数。
其它负数的补数,可以按照下式来求:
补数 = 周期 + 负数
------------
计算机中使用二进制,补数,就改称为【补码】。
八位二进制是:0000 0000~1111 1111。
相当于十进制:0~255, 周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128 的补码,就是 1000 0000 = 128。
负数补码的计算公式:【 256 + 这个负数 】。
(式中的 256 = 2^8,是八位补码的周期。)
正数,并不存在补码。所以,也不用求补码,直接运算即可。
(也有人乱说:正数本身就是补码。)
------------
用计算机计算: 7-3 = 4。
计算机中,并没有减法器,必须改用补码相加。
竖式如下:
7 的补码=0000 0111
-3的补码=1111 1101
--相加-------------
得: (1) 0000 0100 = 4 的补码
舍弃进位,只保留八位,结果完全正确。
------------
借助于补码,可以简化计算机的硬件。
原码和反码,并没有这种功能。
所以,在计算机中,根本就没有它们。
它们都是什么? 就不用关心了。
在计算机系统中,正负数值,一律采用补码表示和存储。
原码反码,都是不用的。不必讨论。
正负数值,与补码的换算,可在下图中看出:
利用一个正数(即补码),就可以代替负数。
那么,计算机中,就没有负数了,也就没有减法运算了。
所以,只需一个加法器,就可以加减通吃了。
原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。
比如
00000000
00000000
00000000
00000101
是
5的
原码。
反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。
取反操作指:原为1,得0;原为0,得1。(1变0;
0变1)
比如:将00000000
00000000
00000000
00000101每一位取反,得11111111
11111111
11111111
11111010。
称:11111111
11111111
11111111
11111010
是
00000000
00000000
00000000
00000101
的反码。
反码是相互的,所以也可称:
11111111
11111111
11111111
11111010
和
00000000
00000000
00000000
00000101
互为反码。
补码:反码加1称为补码。
也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。
比如:00000000
00000000
00000000
00000101
的反码是:11111111
11111111
11111111
11111010。
那么,补码为:
11111111
11111111
11111111
11111010
1
=
11111111
11111111
11111111
11111011
所以,-5
在计算机中表达为:11111111
11111111
11111111
11111011。转换为十六进制:0xFFFFFFFB。
再举一例,我们来看整数-1在计算机中如何表示。
假设这也是一个int类型,那么:
1、先取1的原码:00000000
00000000
00000000
00000001
2、得反码:
11111111
11111111
11111111
11111110
3、得补码:
11111111
11111111
11111111
11111111
正数的原码,补码,反码都相同,都等于它本身
负数的补码是:符号位为1,其余各位求反,末位加1
反码是:符号位为1,其余各位求反,但末位不加1
也就是说,反码末位加上1就是补码
1100110011
原
1011001100
反
除符号位,按位取反
1011001101
补
除符号位,按位取反再加1
在电脑中的原码,反码,补码都是什么意思啊
第一位是符号位,-23的这位是1。
23的原码是10111,前面补两个0,就是0010111
所以-23的原码就是10010111
反码就是11101000
补码就是反码+1=11101001
有符号数,有三种表示方法,即原码、反码和补码。
在计算机系统中,数值一律用补码来表示和存储。
在计算机系统中,原码和反码,都是不存在的。
==================
数值 0,在八位机中,就是 0000 0000。
+1,就是加上一,即为:0000 0001。
+2,就再加一,即为:0000 0010。
其他正数,依次递增即可。。。
最后的是+127,即为:0111 1111。
----------
负数,就是从 0 往下减。
那么,-1 就是 0000 0000-1,取八位的结果,
就是:1111 1111 = 255(十进制)。
同理,-2 就是 1111 1110 = 254。
其他负数,依次递减即可。。。
最后的是-128,即为:1000 0000 = 128。
以上,就是数值,存在计算机中的补码。
求负数的补码,计算公式是:【 256 + 这个负数 】。
如果需要二进制,就自己变换吧。
==================
借助于补码,就可以把减法,转换成加法运算。
这就可以:简化计算机的硬件。
如: 59-31 = 28。
在计算机中,用补码的加法运算如下:
59 的补码=0011 1011
-31 的补码=1110 0001
-相加-------------
得: (1) 0001 1100 = 28 的补码
保留八位,结果完全正确。
这就实现了减法运算。
原码和反码,都没有这种功能。
所以,计算机中,根本就没有原码和反码。
什么是反码,什么是补码和原码。
在计算机系统中,数值,一律用补码来表示和存储。
补码,其实,就是一个“代替负数进行运算”的正数。
使用了补码(正数)之后,在计算机中,就没有负数了。
随之而来的,就是:减法运算也都不存在了。
所以,借助于补码,计算机只需要配置一个加法器,就能走遍天下。
使用补码的目的,就是:简化计算机的硬件。
而原码、反码,都没有这种功能,所以,计算机中,根本就不用它们。
所以,原码和反码,在计算机中,都不存在。
---------------------
补码(一个正数),怎么就能代替负数呢?
你看时针:倒拨 3 小时,可以用正拨 9 小时代替吧?
你看三角函数:-π/2、+3π/2,两者的函数值也是相同的。
10 进制数,如果限定只用 2 位 ,那么就会有:
25 - 1 = 24
25 + 99 = (一百) 24
如果忽略进位一百(10^2),+99 就可以代替-1。
上面所说的这些正数,就是“负数的补数”。
求补数的公式是: 补数(即正数)= 负数 + 周期。
正数,必须直接就参加运算,不可再做任何变换。
就是说:正数,本身就已经是正数了,它并不存在什么补数。
---------------------
计算机用二进制,那就称为“补码”了。
8 位 2 进制,其周期,就是:2^8 = 256。
8 位 2 进制,总共可以组成 256 个代码。
用其中的一半(即 128 个)代表负数:-1 ~ -128。
那么:
-1 的补码,就是:-1 + 256 = 255 = 1111 1111(二进制)。
-2 的补码是:-2 + 256 = 254 = 1111 1110。
。。。
-128 的补码,就是:128 = 1000 0000。
---------------------
至此,你就可以推出“补码的定义式”:
当 X >= 0, [ X ]补 = X; 零和正数不用变换。
当 X < 0, [ X ]补 = X + 2^n。 n 是补码的位数。
这是通用的公式。
在严谨一点的书上,也有这种公式,你去翻翻书吧。
---------------------
按照公式求补码,是极为简便的,而且还能理解补码的意义。
由补码,求其代表的数值,也是很方便的。
那么,就不要学“原码反码取反加一符号位不变”了。
只有那些数学不好的老外,才弄这些“隔路”的花样。
实际上,只要会“补码与数值”的互换,就够用了。
---------------------
算式 5 - 7 =-2,计算机用八位补码计算如下:
5 = 0000 0101
[-7]补码 = 1111 1001
--相加-----------
得: (1) 1111 1110 = [-2]补码
舍弃了进位,结果,就是正确的。
反码补码原码怎么转换,来看看方法吧。
1、首先原始代码的最高位是符号位,0表示正,1表示负,中间值表示数字的绝对值。
2、符号的反转,正数符号的反转与原符号相同,负数的补数是该符号的最低有效位数加上1。
3、补数,正数的补数与原代码相同,负数的补数在其倒数第一的基础上加1。零分为+0和-0。 进行不同符号的加法或同一符号的减法时,不能直接进行加法或减法,不能直接给出正负的结果。
4、必须先取绝对值,然后再加上减法。 符号比特由较大的绝对值决定,因此出现了转码。 反码是对原始代码的改进。补码在针对加减运算和正负零的问题上都解决了,平时用的最多的也就是补码。
补码,原码,反码什么的。有什么作用啊!
这三个词是计算机里面的内容,下面依次解释:
原码:原码就是早期用来表示数字的一种方式: 一个正数,转换为二进制位就是这个正数的原码。负数的绝对值转换成二进制位然后在高位补1就是这个负数的原码。
举例:
int类型的 3 的原码是 11B(B表示二进制位), 在32位机器上占四个字节,那么高位补零就得:
00000000 00000000 00000000 00000011
int类型的 -3 的绝对值的二进制位就是上面的 11B 展开后高位补零就得:
10000000 00000000 00000000 00000011
但是原码有几个缺点,零分两种 +0 和 -0 。很奇怪是吧!还有,在进行不同符号的加法运算或者同符号的减法运算的时候,不能直接判断出结果的正负。你需要将两个值的绝对值进行比较,然后进行加减操作 ,最后符号位由绝对值大的决定。于是反码就产生了。
反码:正数的反码就是原码,负数的反码等于原码除符号位以外所有的位取反
举例:
int类型的 3 的反码是
00000000 00000000 00000000 00000011
和原码一样没什么可说的
int类型的 -3 的反码是
11111111 11111111 11111111 11111100
除开符号位,所有位,取反
解决了加减运算的问题,但还是有正负零之分,然后就到补码了
补码:正数的补码与原码相同,负数的补码为 其原码除符号位外所有位取反(得到反码了),然后最低位加1.
举例:
int类型的 3 的补码是:
00000000 00000000 00000000 00000011
int类型的 -3 的补码是
11111111 11111111 1111111 11111101
就是其反码加1
最后总结:
正数的反码和补码都与原码相同。
负数的反码为对该数的原码除符号位外各位取反。
负数的补码为对该数的原码除符号位外各位取反,然后在最后一位加1。
扩展资料二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<
>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为(-127~-0 +0~127)共256个. 有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确. 因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算: ( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10 (00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题.( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:(-128~0~127)共256个.注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10(00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10(00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确 所以补码的设计目的是: ⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计 所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码。看了上面这些大家应该对原码、反码、补码有了新的认识了吧!有网友对此做了进一步的总结:本人大致总结一下:1、在计算机系统中,数值一律用补码来表示(存储)。主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。2、补码与原码的转换过程几乎是相同的。数值的补码表示也分两种情况:
(1)正数的补码:与原码相同。
例如,+9的补码是00001001。
(2)负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。
例如,-7的补码:因为是负数,则符号位为“1”,整个为10000111;其余7位为-7的绝对值+7的原码0000111按位取反为1111000;再加1,所以-7的补码是11111001。
已知一个数的补码,求原码的操作分两种情况:
(1)如果补码的符号位为“0”,表示是一个正数,所以补码就是该数的原码。
(2)如果补码的符号位为“1”,表示是一个负数,求原码的操作可以是:符号位为1,其余各位取反,然后再整个数加1。
例如,已知一个补码为11111001,则原码是10000111(-7):因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”;其余7位1111001取反后为0000110;再加1,所以是10000111。在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”。我在这里稍微介绍一下“模”的概念:“模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范围,即都存在一个“模”。例如: 时钟的计量范围是0~11,模=12。
表示n位的计算机计量范围是0~2(n)-1,模=2(n)。【注:n表示指数】
“模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的余数。任何有模的计量器,均可化减法为加法运算。例如: 假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法: 一种是倒拨4小时,即:10-4=6 另一种是顺拨8小时:10+8=12+6=6 在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特性。共同的特点是两者相加等于模。 对于计算机,其概念和方法完全一样。n位计算机,设n=8, 所能表示的最大数是11111111,若再加1称为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的模为2(8)。 在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以了。 把补数用到计算机对数的处理上,就是补码。
使用补码表示,就是为了让计算机内部计算的加减法能够统一起来,变成同一级运算,也就是说,将减法也使用加法进行处理。相当于减一个数就是加它的相反数。
1、补码:解决负数加法运算正负零问题,弥补了反码的不足。 2、原码:可直观反映出数据的大小。 3、反码:解决负数加法运算问题,将减法运算转换为加法运算,从而简化运算规则。
数值在计算机中表示形式为机器数,计算机只能识别0和1,使用的是二进制,而在日常生活中人们使用的是十进制,"正如亚里士多德早就指出的那样,今天十进制的广泛采用,只不过我们绝大多数人生来具有10个手指头这个解剖学事实的结果.尽管在历史上手指计数(5,10进制)的实践要比二或三进制计数出现的晚."(摘自<>有空大家可以看看哦~,很有意思的).为了能方便的与二进制转换,就使用了十六进制(2 4)和八进制(23).下面进入正题.
数值有正负之分,计算机就用一个数的最高位存放符号(0为正,1为负).这就是机器数的原码了.假设机器能处理的位数为8.即字长为1byte,原码能表示数值的范围为
(-127~-0 +0~127)共256个.
有了数值的表示方法就可以对数进行算术运算.但是很快就发现用带符号位的原码进行乘除运算时结果正确,而在加减运算的时候就出现了问题,如下: 假设字长为8bits
( 1 ) 10- ( 1 )10 = ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)原 + (10000001)原 = (10000010)原 = ( -2 ) 显然不正确.
因为在两个整数的加法运算中是没有问题的,于是就发现问题出现在带符号位的负数身上,对除符号位外的其余各位逐位取反就产生了反码.反码的取值空间和原码相同且一一对应. 下面是反码的减法运算:
( 1 )10 - ( 1 ) 10= ( 1 ) 10+ ( -1 ) 10= ( 0 )10
(00000001) 反+ (11111110)反 = (11111111)反 = ( -0 ) 有问题.
( 1 )10 - ( 2)10 = ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 反+ (11111101)反 = (11111110)反 = ( -1 ) 正确
问题出现在(+0)和(-0)上,在人们的计算概念中零是没有正负之分的.(印度人首先将零作为标记并放入运算之中,包含有零号的印度数学和十进制计数对人类文明的贡献极大).
于是就引入了补码概念. 负数的补码就是对反码加一,而正数不变,正数的原码反码补码是一样的.在补码中用(-128)代替了(-0),所以补码的表示范围为:
(-128~0~127)共256个.
注意:(-128)没有相对应的原码和反码, (-128) = (10000000) 补码的加减运算如下:
( 1 ) 10- ( 1 ) 10= ( 1 )10 + ( -1 )10 = ( 0 )10
(00000001)补 + (11111111)补 = (00000000)补 = ( 0 ) 正确
( 1 ) 10- ( 2) 10= ( 1 )10 + ( -2 )10 = ( -1 )10
(00000001) 补+ (11111110) 补= (11111111)补 = ( -1 ) 正确
所以补码的设计目的是:
⑴使符号位能与有效值部分一起参加运算,从而简化运算规则.
⑵使减法运算转换为加法运算,进一步简化计算机中运算器的线路设计
所有这些转换都是在计算机的最底层进行的,而在我们使用的汇编、C等其他高级语言中使用的都是原码。
作用如下:
1、补码:解决负数加法运算正负零问题,弥补了反码的不足。
2、原码:可直观反映出数据的大小。
3、反码:解决负数加法运算问题,将减法运算转换为加法运算,从而简化运算规则。
扩展资料
在计算机内,定点数有3种表示法:原码、反码和补码。
所谓原码就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
表示方法:
1、原码的表示:在数值前直接加一符号位的表示法。
2、反码的表示:
(1)、正数:正数的反码与原码相同。
(2)、负数:负数的反码,符号位为“1”,数值部分按位取反。
3、补码的表示:
(1)、正数:正数的补码和原码相同。
(2)、负数:负数的补码则是符号位为“1”。并且,这个“1”既是符号位,也是数值位。数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。
参考资料来源:百度百科:有符号数处理
数学发展史>
原码,补码,反码都是什么意思,怎么算啊
计算机中,并没有原码和反码,只是使用补码,代表正负数。
使用补码的意义:可以把减法或负数,转换为加法运算。从而简化计算机的硬件。
------------
比如钟表,时针转一圈的周期是 12 小时。
倒拨 3 小时,可以用正拨 9 小时代替。
9,就是-3 的补数。
计算方法:12-3 = 9。
对于分针,倒拨 X 分,就可以用正拨 60-X 代替。
------------
比如限定了两位十进制数 (0~99),周期就是 100。
那么,减一,就可以用 +99 代替。
24-1 = 23
24 + 99 = (1) 23
忽略进位,只取两位数,这两种算法,结果就是相同的。
于是,99 就是 -1 的补数。
其它负数的补数,大家可以自己求!
------------
计算机中使用二进制,补数,就改称为【补码】。
常用的八位二进制是:0000 0000~1111 1111。
它们代表了十进制:0~255,周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128,补码是 1000 0000 = 128。
计算公式:负数的补码=256+这个负数。
正数,直接运算即可,不需要求补码。
也可以说,正数本身就是补码。
------------
补码的应用,如: 7-3 = 4。
用补码的计算过程如下:
7 的补码=0000 0111
-3的补码=1111 1101
--相加-------------
得 (1) 0000 0100 = 4 的补码
舍弃进位,只保留八位作为结果。
------------
原码和反码,毫无用处。计算机中,根本就没有它们。
在计算机系统中,数值,一律采用补码表示和存储。
计算机中,并没有原码和反码。
补码,其实,就是一个“代替负数”的正数。
采用了补码之后,计算机中,就没有负数了,也就没有减法运算了。
采用了补码,计算机的硬件,就可以得到简化。
原码和反码,都没有这种功能,所以,根本就没有用它们。
-------------------------
补码(正数),能代替负数,这是什么意思呢?
且看常识:
时针,倒拨 3 小时,可以用正拨 9 小时代替。
关系式,是: +9 = 12-3。
式中的 12,是时针的计数周期。
分针,倒拨 X 分,可用正拨(60-X)代替。
式中的 60,是分针的计数周期。
--------------------------
计算机用二进制。8 位 2 进制的计数周期是:2^8 = 256。
求补码,也是用这个关系式:
[ X ]补码 = 周期 + X, X < 0。
-1 的补码,就是:256-1 = 255 = 1111 1111(二进制)。
-2 的补码,就是:256-2 = 254 = 1111 1110(二进制)。
。。。
-128 的补码,就是:128 = 1000 0000(二进制)。
正数,不可转换,必须用原数值,参加运算。
所以,正数,并没有补码。
--------------------------
求补码,并不需要绕到“原码反码符号位取反加一”。
你如果绕远了,你就不会理解:补码是什么意思。
原码和反码,本身就是不合理的编码。
一个零,它们都弄了两个编码!
而且,它们还缺少-128 的编码。
这样的烂码,怎么能用?
所以,原码和反码,在计算机中,都是不存在的。
原码、反码、补码和移码是机器存储一个具体数字的编码方式,具体转换方法请参考视频教程:
原码反码补码移码概念和转换方法
把十进制数转换成二进制数后,二进制数就是原码
例如:十进制:2 -----> 二进制:10
“二进制:10“就是原码
为了凑够8位,在二进制10前面加6个0,变成00000010
2的原码:00000010
2的反码:00000010
2的补码:00000010
也就是,正数的原码,反码,补码都相同
下面是负数的原码、反码、和补码:
3的原码:00000011 -3的原码:10000011 也就是最左边的那个数表示正负,0代表正,1代表负,它也叫符号位
-3的原码:10000011
-3的反码:11111100 负数的反码是对其原码按位取反,符号位不变
-3的补码:11111101 负数的补码是在其反码的末位加1
计算机用补码计算
二进制的原码、反码、补码、移码
数值,在计算机系统中,一律采用补码表示和存储。
在计算机中,原码和反码,都是不存在的。
你只要掌握“数值与补码”的互换,就可以了。
当码长八位时:
零和正数,不用变换。
负数,加上 256,就是补码了。------------------
原码反码取反加一符号位不变,这些,都是干什么的呢?
老外数学不好,弄不出来转换公式,才需要弄哪些个骚操作。
移码,应用场合有限。
之前了解一些原码、反码、补码,但是一直有疑问,为什么会有原码、反码、补码?所以决定研究一下。
计算机中参与运算的数有两大类:无符号数和有符号数。此篇主要看一下有符号数。在了解原码、反码、补码前需要先了解机器数和真值。
对于有符号数而言,使用“0”表示正,“1”表示负,这种把符号“数字化”的数称为 机器数 ,也就是一个数在计算机中的二进制表示。
例如:+1100 在机器中表示为 0 1100;-1100 在机器中表示为1 1100
整数的符号位和值用逗号隔开,小数的小数点用点来隔开。 例如:+3转换成二进制就是00000011,-3就是10000011,这就是机器数。
带符号位的机器数对应的真正数值就是 真值 。例如:1000 0011的真值是-3,而不是131,它的最高位是符号位。
下面开始说原码、反码、补码。
原码是机器数中最简单的一种表示形式,包括符号位和数值位。
原码: 符号位加上真值的绝对值,即第一位表示符号位,其余为表示值。原码是人脑最容易理解和计算的表示方式。
整数原码的定义:
小数原码的定义为:
原码的问题: 以正负1来说明问题,先来看1+(-1)的计算过程:
1+(-1)=0,但是用原码来算结果却是-2,原码的加法没有问题,但是减法却出现了问题。
为了解决原码做减法时出现的问题,出现了反码,我们用其他的方式来表示负数,使减法的问题用加法去解决。
补数的思想: 要了解补码的思想就要知道“模”、“同余”、“补数”的概念。
在日常生活中,常会遇到“补数”的概念。计算机组成原理(唐朔飞)中举了一个时钟的例子,现在是6点钟,要到达3点钟的话该怎么办呢?我们可以顺时针方向将时针移动9小时,或是逆时针移动3小时,我们都可以到达3点钟,假设顺时针转为正,逆时针转为负,则有:
钟表时针转一圈能代表12个小时,在数学上称12为模,写作mod 12,对于mod 12而言,+9和-3互为补数,3和15是同余关系,记作3≡15 (mod 12),3 + 12 = 15.
其实就相当于没到12点就丢失,从0点重新开始。
将补数的概念用到计算机中,便出现了补码这种机器数。
补码 :正数的反码是其本身,负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1),这里只是便于计算才这样说。
对于补码,相当于是模加上真值,就如同上面的6+(-3),-3就是真值。 整数补码的定义为:
例如: 当x=+1010时,[x] 补 =0,1010; 当x=-1101时,[x] 补 =2 n+1 + x = 2 5 - 1101 = 100000 - 1101 = 1,0011
小数补码的定义为:
小数补码定义中mod 2的由来:
例如: 当x=+0.0110时,[x] 补 =0.1001; 当x=-0.0110时,[x] 补 =2 + x = 10.0000 - 0.0110 = 1.1010 当x=0时, [+0.0000] 补 =0.0000; [-0.0000] 补 =2 + (-0.0000) = 10.0000 - 0.0000 = 0.0000; 显然[+0] 补 =[-0] 补 =0.0000,即补码中的“零”只有一种表示形式。
补码的符号位扩展: 1、补码的正负小数符号位扩展就是在末尾加0即可,例如:1.1101扩展为1.1101 0000 2、补码的正数符号位扩展在最高位前面加0即可,例如:0101扩展为0000 0101 3、补码的负数符号位扩展在最高位前面加1既可以,例如:1010扩展为1111 1010
反码通常用来作为由原码求补码或者由补码求原码的中间过渡。 反码: 正数的反码是其本身,负数的反码是在其原码的基础上,符号位不变,其余各个位取反。 这个方法只是利于计算,但是并不代表反码的真正含义,可以把它忘记
整数反码的定义为:
小数反码的定义为:
因为补码符号位和数值一起编码,所以很难从补码上直接判断出其真值的大小,而用移码就可以很直观的看判断出来。
移码的定义:
利用移码的这一特点,当浮点数的阶码用移码表示时,就能很方便的判断阶码的大小。
移码 相当于补码的符号位取反。
对于补码来说是存在符号位的,使用移码就相当于把补码的负数部分往上移动,使得最小值变为0,而不是负数。
移码更详细的用处以后再研究。
写在最后: