百度
360搜索
搜狗搜索

2的补码怎么算,补码的补码怎么求?详细介绍

本文目录一览: 二进制补码怎么计算的

06如何快速的将二进制转换成十进制
1、机器数
一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数0,负数为1。12
比如,十进制中的数 +3 ,计算机字长为8位,转换成二进制就是0000 0011。如果是 -3 ,就是 1111 1101 。那么,这里的 00000011 和 1111 1101 就是机器数。 机器数包含了符号和数值部分。
2、真值
因为第一位是符号位,所以机器数的形式值就不能很好的表示真正的数值。例如上面的有符号数 1111 1101,其最高位1代表负,其真正数值是 -3 而不是形式值253(1111 1101按无符号整数转换成十进制等于253)。所以,为区别起见,将带符号位的机器数对应的真正数值称为机器数的真值。 例:0000 0001的真值 = +000 0001 = +1,1000 0001的真值 = –0111 1111 = –127;这里所说的比如-3二进制代码为10000011,就是我们计算机里面对-3表示的源码。下面介绍源码 首先说明一点 在计算机内,有符号数有3种表示法:原码、反码和补码。
3、原码
原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制 [+1]原 = 0000 0001 [-1]原 = 1000 0001因为第一位是符号位, 所以若是8位二进制数,其取值范围就是: [1111 1111 , 0111 1111] 即[-127 , 127] 原码是人脑最容易理解和计算的表示方式。
4 、反码
反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。 [+1] = [ 00000001 ]原码 = [ 00000001 ]反码; [-1] = [ 10000001 ]原码 = [ 11111110 ]反码; 可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算。
什么是二进制的补码?
注明:正数的补码与负数的补码一致,负数的补码符号位为1,这位1即是符号位也是数值位,然后加1
补码借鉴的模概念,虽然理解起来有点晦涩难懂。可以跳过
模的概念:把一个计量单位称之为模或模数。例如,时钟是以12进制进行计数循环的,即以12为模。 在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为补数。同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为16),因此它的运算也是一种模运算。当计数器计满16位也就是65536个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,16位二进制数,它的模数为2^16=65536。在计算中,两个互补的数称为“补码”。比如一个有符号8位的数可以表示256个数据,最大数是0 1 1 1 1 1 1 1(+127),最小数1 0 0 0 0 0 0 0 (-128);那么第255个数据,加2和减254都是一样的效果得出的结果是第一个数据 ,所以2和254是一样的效果。对于255来说2和254是互补的数。 求一个正数对应补码是一种数值的转换方法,要分二步完成: 第一步,每一个二进制位都取相反值,即取得反码;0变成1,1变成0。比如,00001000的反码就是11110111。 第二步,将上一步得到的反码加1。11110111就变成11111000。所以,00001000的二进制补码就是11111000。也就是说,-8在计算机(8位机)中就是用11111000表示。 不知道你怎么看,反正我觉得很奇怪,为什么要采用这么麻烦的方式表示负数,更直觉的方式难道不好吗?
二进制补码的好处
首先,要明确一点。计算机内部用什么方式表示负数,其实是无所谓的。只要能够保持一一对应的关系,就可以用任意方式表示负数。所以,既然可以任意选择,那么理应选择一种用的爽直观方便的方式。 二进制的补码就是最方便的方式。它的便利体现在,所有的加法运算可以使用同一种电路完成。还是以-8作为例子。假定有两种表示方法。一种是直觉表示法,即10001000;另一种是2的补码表示法,即11111000。请问哪一种表示法在加法运算中更方便?随便写一个计算式,16 + (-8) = ?16的二进制表示是 00010000,所以用直觉表示法,加法就要写成:00010000 +10001000原码形式-8 ---------10011000 可以看到,如果按照正常的加法规则,就会得到10011000的结果,转成十进制就是-24。显然,这是错误的答案。也就是说,在这种情况下,正常的加法规则不适用于正数与负数的加法,因此必须制定两套运算规则,一套用于正数加正数,还有一套用于正数加负数。从电路上说,就是必须为加法运算做两种电路。所以用原码表示负数是不行的。 现在,再来看二进制的补码表示法。00010000 +11111000补码形式-8 --------- 100001000 可以看到,按照正常的加法规则,得到的结果是100001000。注意,这是一个9位的二进制数。我们已经假定这是一台8位机,因此最高的第9位是一个溢出位,会被自动舍去。所以,结果就变成了00001000,转成十进制正好是8,也就是16 + (-8) 的正确答案。这说明了,2的补码表示法可以将加法运算规则,扩展到整个整数集,从而用一套电路就可以实现全部整数的加法。
二进制补码的本质,本质是用来表示负整数的
在回答二进制补码为什么能正确实现加法运算之前,我们先看看它的本质,也就是那两个求补码步骤的转换方法是怎么来的。下面描述了一个正数怎么求它对应负数在计算机的表达方式。比如128,正数为10000000,但是惊奇的发现-128也是10000000。但是这里由于属于数据类型的限定,第八位同样一个1代表不同的含义,前面的 1是数值位,后面数的 1是符号位。 要将正数转成对应的负数,其实只要用0减去这个数就可以了。比如,-8其实就是0-8。用模数的概念解释如下图 已知8的二进制是00001000,-8就可以用下面的式子求出:00000000 -00001000 ---------- - - - 因为00000000(被减数)小于0000100(减数),所以不够减。请回忆一下小学算术,如果被减数的某一位小于减数,我们怎么办?很简单,问上一位借1就可以了。 所以,0000000也问上一位借了1,也就是说,被减数其实是100000000,这是重点;算式也就改写成: 100000000 -00001000 ---------- - -11111000 进一步观察,可以发现可分拆为100000000 = 11111111 + 1,所以上面的式子可以拆成两个:11111111 -00001000 ---------11110111取反 +00000001加一 ---------11111000 二进制的补码两个转换步骤就是这么来的。 举个例子,比如-128补码的由来,先把正整数128二进制表示出来10000000求-128的补码1 1 1 1 1 1 1 1 -1 0 0 0 0 0 0 0 ---------0 1 1 1 1 1 1 1+0 0 0 0 0 0 0 1---------1 0 0 0 0 0 0 0 即-128的补码是10000000。8位的结构能表示的最小数是-128; 所以可以总结求补码的范式是这样的: 求n位系统的一个数正数A : 01101101101……….11101100(n位二进制),怎么求他的补码呢,就用n位的1111111111111111111…..111(n位) - 11101101101……….11101100(n位二进制) + 1 = A的补码就行啦!但是 如果一个1111111111111…..111111(n位全为1的正整数的补码),要用1111111111111…….11111(n+1位) - 1111111111111…..111111(n位全为1的正整数) +1 才能求的她对应的补码。 如uint16 A =200, uint16 B =65535,那么C =A-B; 65535的补码:正数65535为1111 1111 1111 1111,进行下面的计算求得B的补码即-B;先展示有补码符号位,即补码有最高位位1的; 1 1111 1111 1111 1111 -1111 1111 1111 1111 +1 =1 0000 0000 0000 0001,相当于被减数是10 0000 0000 0000 0000(18位) =1 1111 1111 1111 1111 +1 因为A和B 都是16位的无符号数,所以65535的补码最高位舍去,相当于被减数是1 0000 0000 0000 0000 =1111 1111 1111 1111 +1,即可以用上面的范式方法,但是这样-B就没有体现它的负数的符号位了;当然这是因为16位运算超出16位的位都舍去了。即-B=1;即A-B= 200+1 =201。其实也可以用模数概念解释A -B;如下图正数的模数
为什么正数加法也适用于二进制的补码?
实际上,我们要证明的是,X-Y或X+(-Y)可以用X加上Y的2的补码(-Y)完成。 Y的二进制补码等于(11111111-Y)+1。所以,X加上Y的2的补码,就等于:X + (11111111-Y) + 1;我们假定这个算式的结果等于Z,即 Z = X + (11111111-Y) + 1。 接下来,分成两种情况讨论。 第一种情况,如果X小于Y,那么Z是一个负数。这时,我们就对Z采用补码的逆运算,就是在做一次求补码运算,求出它对应的正数绝对值,只要前面加上负号就行了。所以, Z = -[11111111-Z+1] = -[11111111-(X + (11111111-Y) + 1)+1)] = X - Y;这里如果X Y Z都是无符号型的,且X < Y 那么Z 最终得到的数是|X-Y|距离的绝对值了,比如X=1,Y= 255,那么Z=2,因为从255到1只要加两次就到了。这里你不要问我为什么,这里就用到上面的模概念。 第二种情况,如果X大于Y,这意味着Z肯定大于11111111,但是我们规定了这是8位机,最高的第9位是溢出位,必须被舍去,舍去相当于减去吗!所以减去100000000。所以, Z = Z - 100000000 = X + (11111111-Y) + 1 - 100000000 = X - Y 这就证明了,在正常的加法规则下,可以利用2的补码得到正数与负数相加的正确结果。换言之,计算机只要部署加法电路和补码电路,就可以完成所有整数的加法。
补码(two's complement)
1、在计算机系统中,数值一律用补码来表示(存储)。
主要原因:使用补码,可以将符号位和其它位统一处理;同时,减法也可按加法来处理。另外,两个用补
码表示的数相加时,如果最高位(符号位)有进位,则进位被舍弃。
2、补码与原码的转换过程几乎是相同的。
求给定数值的补码表示分以下两种情况:
(1)正数的补码:与原码相同。
【例1】+9的补码是00001001。
(2)负数的补码:符号位为1,其余位为该数绝对值的原码按位取反;然后整个数加1。
你在百度百科里搜索补码,人家写的很清楚,我也是引用的~~~具体去搜吧,不能影响了版权呵呵
我是个刚弄懂的人。正数反码补码原码相同,为什么呢?规定的!因为计算机通常只有一个加法器,做减法器太麻烦。所以就将减法连着减数作为负数来处理,就只需要加了。但是正数和一个负数在计算机这样一个用二进制表示数的环境中如何进行加法计算呢?于是我们可以忽略正数的变化,主要是要处理负数变成一种二进制表示让它能和正数相加。比如在计算机中1的二进制表示0001.-1的二进制表示1111(这是补码反码引进后变化后的)0001+0111=10000但是显然这里的位数是4位的所以只会出现0000,也就是0,就完成了1-1=0这个计算。这就是利用计算机的溢出现象。不管怎样,反码补码概念的引入都是为了这个目的,实现计算,这样就容易理解了。还有个有关于模数(mod)的概念,4位二进制的模数是16,就是能表示多少个二进制数(此处先忽略符号概念),4位最大只有1111,换成十进制是15,最小是0000,十进制0.如果1111加上0001,就等于了模数16.(这样更容易理解我觉得)。如果按照是时钟那样想,模数为24.现在停在0点,正数就是顺时针转如+6,转6下,不用管。再逆时针转8下,就是-8。现在多少点?想象中转一下,应该是22点。但是在一个为24的环境中,事实上,mod24像一个界限,如何计算。要将-8换成一个能够准确计算的正数。就是我们发现逆时针转8下,跟顺时针转16下效果相同的(可以自己转一下)。也就是-8可以换成+16,使得6-8转换为6+16=22或者还有+9-8转成+9+16=24+1。24是一个在计算机溢出数,没有用,在时钟这就是转了一圈到另一天,时间一样,也‘溢出’了。---一个专注于讲的通俗的初学者
下面我研究一下,为什么负数的补码是将它的绝对值原码变成取反各位再加一。负数在二进制中的表示在符号位出现前是没法表示的。我想这也是为什么取绝对值的原码的原因。取绝对值其实就是其正数的原码,而正数的原码和反码是相同的,所以这里说各个位取反。例如-1绝对值的原码0001取反变成1110(反码)再加1变成1111(补码)--以上概念不一定准确,个人理解综合。
最佳答案没有问题,那些踩的肯定是想要具体的例子,我来补充一下
1、原码:假设这里的1100100是原码
2、反码:想算补码,先要算反码,1100100的反码就是除符号位外按位取反1011011
3、补码:补码就是在反码的基础上+1,这里的补码就是1011100
1、正数的补码表示:
正数的补码 = 原码
负数的补码 = {原码符号位不变} + {数值位按位取反后+1} or
= {原码符号位不变} + {数值位从右边数第一个1及其右边的0保持不变,左边安位取反}
以十进制整数+97和-97为例:
+97原码 = 0110_0001b
+97补码 = 0110_0001b
-97原码 = 1110_0001b
-97补码 = 1001_1111b
2、纯小数的原码:
纯小数的原码如何得到呢?方法有很多,在这里提供一种较为便于笔算的方法。
以0.64为例,通过查阅可知其原码为0.1010_0011_1101_0111b。
操作方法:
将0.64 * 2^n 得到X,其中n为预保留的小数点后位数(即认为n为小数之后的小数不重要),X为乘法结果的整数部分。
此处将n取16,得
X = 41943d = 1010_0011_1101_0111b
即0.64的二进制表示在左移了16位后为1010_0011_1101_0111b,因此可以认为0.64d = 0.1010_0011_1101_0111b 与查询结果一致。
再实验n取12,得
X = 2621d = 1010_0011_1101b 即 0.64d = 0.1010_0011_1101b,在忽略12位小数之后的位数情况下,计算结果相同。
3、纯小数的补码:
纯小数的补码遵循的规则是:在得到小数的源码后,小数点前1位表示符号,从最低(右)位起,找到第一个“1”照写,之后“见1写0,见0写1”。
以-0.64为例,其原码为1.1010_0011_1101_0111b
则补码为:1.0101_1100_0010_1001b
当然在硬件语言如verilog中二进制表示时不可能带有小数点(事实上不知道哪里可以带小数点)。
4、一般带小数的补码
一般来说这种情况下先转为整数运算比较方便
-97.64为例,经查询其原码为1110_0001.1010_0011_1101_0111b
笔算过程:
-97.64 * 2^16 = -6398935 = 1110_0001_1010_0011_1101_0111b,其中小数点在右数第16位,与查询结果一致。
则其补码为1001_1110_0101_1100_0010_1001b,在此采用 负数的补码 = {原码符号位不变} + {数值位按位取反后+1} 方法
5、补码得到原码:
方法:符号位不动,幅度值取反+1 or符号位不动,幅度值-1取反
-97.64补码 = 1001_1110(.)0101_1100_0010_1001b
取反 = 1110_0001(.)1010_0011_1101_0110b
+1 = 1110_0001(.)1010_0011_1101_0111b 与查询结果一致
6、补码的拓展:
在运算时必要时要对二进制补码进行数位拓展,此时应将符号位向前拓展。
-5补码 = 4'b1011 = 6'b11_1011
ps.原码的拓展是将符号位提到最前面,然后在拓展位上部0.
-5原码 = 4‘b’1101 = 6'b10_0101,对其求补码得6'b11_1011,与上文一致。
扩展资料:
计算机中的符号数有三种表示方法,即原码、反码和补码。三种表示方法均有符号位和数值位两部分,符号位都是用0表示“正”,用1表示“负”,而数值位,三种表示方法各不相同。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。

阅读更多 >>>  补码和反码的关系,补码与反码有什么用处?

什么是2的补码?

补码详细定义自行百度。
这里简单介绍,补码的首位是符号位,首位为0是正数,为1是负数。
8的无符号位原码是000 1000,补码是111 1000,带上符号位就是1111 1000了。
输出z的值应该是-114吧,怎么会是-14
按位取反再+1就是2的补码,而只按位取反就是1的补码。
这是编者鼓弄玄虚。不愿意按照规范的术语来编写教材。
有些书籍里面,给出了对应的说明:
2的补码数,就是常说的补码;
1的补码数,就是常说的反码。
什么是 2 的补码?
2 的补码,就是常说的补码。
1 的补码,就是反码。
这么翻译,应该是计算机专家闹的怪。
--------------------
x = 13,二进制是:0000 1101。
~x,取反,就得到:1111 0010 = 242。
这个数,正是-14 的补码。
--------------------
所谓的补码,就是一个“代替负数”的正数。
用补码(一个正数)代替负数之后,在计算机中,就没有负数了。
同时,也就没有减法运算了。
这样做,就可以简化计算机的硬件。
--------------------
正数,怎么就能代替负数呢?
这个问题,用十进制说明,比较容易理解。
一个小朋友,只会数一百个数(0~99),到了 100,就重新开始数。
计数周期,就是: 10^2 = 100。
此时,将有:
25 - 1 = 24
25 + 99 = (一百) 24
忽略进位 100,+99 就可以代替-1。
98,也就可以代替-2。
。。。
替换公式:代替负数的正数=负数+周期。
--------------------
计算机中,8 位 2 进制数,周期是:2^8 = 256。
代替-1 的是:-1 + 256 = 255 = 1111 1111 (二进制)。
。。。
代替-14 的是:-14 + 256 = 242 = 1111 0010。
这就你的问题的答案。

原码,补码,反码都是什么意思,怎么算啊

计算机中,并没有原码和反码,只是使用补码,代表正负数。
使用补码的意义:可以把减法或负数,转换为加法运算。从而简化计算机的硬件。
------------
比如钟表,时针转一圈的周期是 12 小时。
倒拨 3 小时,可以用正拨 9 小时代替。
9,就是-3 的补数。
计算方法:12-3 = 9。
对于分针,倒拨 X 分,就可以用正拨 60-X 代替。
------------
比如限定了两位十进制数 (0~99),周期就是 100。
那么,减一,就可以用 +99 代替。
  24-1 = 23
  24 + 99 = (1) 23
忽略进位,只取两位数,这两种算法,结果就是相同的。
于是,99 就是 -1 的补数。
其它负数的补数,大家可以自己求!
------------
计算机中使用二进制,补数,就改称为【补码】。
常用的八位二进制是:0000 0000~1111 1111。
它们代表了十进制:0~255,周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128,补码是 1000 0000 = 128。
计算公式:负数的补码=256+这个负数。
正数,直接运算即可,不需要求补码。
   也可以说,正数本身就是补码。
------------
补码的应用,如: 7-3 = 4。
用补码的计算过程如下:
    7 的补码=0000 0111
   -3的补码=1111 1101
--相加-------------
   得   (1) 0000 0100 = 4 的补码
舍弃进位,只保留八位作为结果。
------------
原码和反码,毫无用处。计算机中,根本就没有它们。
在计算机系统中,数值,一律采用补码表示和存储。
计算机中,并没有原码和反码。
补码,其实,就是一个“代替负数”的正数。
采用了补码之后,计算机中,就没有负数了,也就没有减法运算了。
采用了补码,计算机的硬件,就可以得到简化。
原码和反码,都没有这种功能,所以,根本就没有用它们。
-------------------------
补码(正数),能代替负数,这是什么意思呢?
且看常识:
  时针,倒拨 3 小时,可以用正拨 9 小时代替。
关系式,是: +9 = 12-3。
式中的 12,是时针的计数周期。
  分针,倒拨 X 分,可用正拨(60-X)代替。
式中的 60,是分针的计数周期。
--------------------------
计算机用二进制。8 位 2 进制的计数周期是:2^8 = 256。
求补码,也是用这个关系式:
  [ X ]补码 = 周期 + X,   X < 0。
-1 的补码,就是:256-1 = 255 = 1111 1111(二进制)。
-2 的补码,就是:256-2 = 254 = 1111 1110(二进制)。
。。。
-128 的补码,就是:128 = 1000 0000(二进制)。
正数,不可转换,必须用原数值,参加运算。
所以,正数,并没有补码。
--------------------------
求补码,并不需要绕到“原码反码符号位取反加一”。
你如果绕远了,你就不会理解:补码是什么意思。
原码和反码,本身就是不合理的编码。
一个零,它们都弄了两个编码!
而且,它们还缺少-128 的编码。
这样的烂码,怎么能用?
所以,原码和反码,在计算机中,都是不存在的。
原码、反码、补码和移码是机器存储一个具体数字的编码方式,具体转换方法请参考视频教程:
原码反码补码移码概念和转换方法
把十进制数转换成二进制数后,二进制数就是原码
例如:十进制:2 -----> 二进制:10
“二进制:10“就是原码
为了凑够8位,在二进制10前面加6个0,变成00000010
2的原码:00000010
2的反码:00000010
2的补码:00000010
也就是,正数的原码,反码,补码都相同
下面是负数的原码、反码、和补码:
3的原码:00000011 -3的原码:10000011 也就是最左边的那个数表示正负,0代表正,1代表负,它也叫符号位
-3的原码:10000011
-3的反码:11111100 负数的反码是对其原码按位取反,符号位不变
-3的补码:11111101 负数的补码是在其反码的末位加1
计算机用补码计算

什么是2的补码运算

就是二进制补码运算!比如:十进制的10,先把它转成二进制为1010,因为他是正数,所以为01010,它的二进制补码就是它自己01010

补码怎么算

补码的计算方法有二进制补码的计算和十进制补码的计算。
1、二进制补码的计算方法:
二进制的补码计算非常简单,各种教材中也经常使用二进制来说明源码、反码与补码三者的关系,掌握一定基础的人都知道一下规则:
(1)原码。
最高位为符号位,0表示正数,1表示负数。
例如:X=0b11(3),四比特表示原码=0011(3);
X=-0b11(-3),四比特表示原码=1011(11);
(2)反码。
最高位为符号位,0表示正数,1表示负数。正数的反码等于本身,负数的反码除符号位外,各位取反。
例如:X=0b11(3),四比特表示原码=0011(3),对应反码为=0011(3);
X=-0b11(-3),四比特表示原码=1011(11),对应反码为=1100(12);
(3)补码。
最高位为符号位,0表示正数,1表示负数。
正数的补码等于本身,负数的补码等于反码+1:
例如:X=0b11(3),四比特表示原码=0011(3),对应反码为=0011(3),补码为=0011(3);
X=-0b11(-3),四比特表示原码=1011(11),对应反码为=1100(12),补码为1101(13);
2、十进制补码的计算方法:
对于十进制数来说,通过前面的性质不难得到正十进制数补码等于其本身,对于负十进制数来说如果还按位进行运算就太麻烦了!为了讲明白,我们从补码的起因说起:
“反码加一”只是补码所具有的一个性质,不能被定义成补码。负数的补码,是能够和其相反数相加通过溢出从而使计算机内计算结果变为0的二进制码。这是补码设计的初衷,具体目标就是让1+(-1)=0,这利用原码是无法得到的:
0001(1)+1001(-1)=1010(-2)。
而在补码中:
0001(1补)+1111(-1补)=10000(1溢出)。
所以对于一个n位的负数-X,有如下关系:X补+(-X)补=100...0=2n。
所以假设寄存器是n位的,那么-X的补码,应该是2n?X的二进制编码。

阅读更多 >>>  补码求原码为啥加一,补码变原码是减1取反吗

-192关于2的补码怎么求?

x = -192d =1100 0000b
若用9位二进制数表示,
[x]原 =1 1100 0000b
[x]反 =1 0011 1111b
[x]补 =1 0100 0000b

二进制补码运算法则是什么?

计算机中,只有加法器。
借助补码,就不用做减法了。
乘除法,也是没有意义的。
所以,补码,只有加法运算。 法则:逢二进一。
在计算机系统中,数值,一律采用补码表示和存储。
数值的计算,都是用补码完成的。
补码的计算,就只有加法运算了。
补码的运算法则,就是:逢二进一。
正数的补码=原码
负数的补码={原码符号位不变}+{数值位按位取反后+1} or
= {原码符号位不变}+{数值位从右边数第一个1及其右边的0保持不变,左边安位取反}
以十进制整数+97和-97为例:
+97原码=0110_0001b
+97补码=0110_0001b
-97原码=1110_0001b
-97补码=1001_1111b
扩展资料
意义
1、解决了符号的表示的问题;
2、可以将减法运算转化为补码的加法运算来实现,克服了原码加减法运算繁杂的弊端,可有效简化运算器的设计;
3、在计算机中,利用电子器件的特点实现补码和真值、原码之间的相互转换,非常容易;
4、补码表示统一了符号位和数值位,使得符号位可以和数值位一起直接参与运算,这也为后面设计乘法器除法器等运算器件提供了极大的方便。

补码的补码怎么求?

在进行补码加减运算时,常采用双符号表示,即正数符号用00,负数符号用11表示.
已知X=+24D=000011000B,Y=-64D=111000000B,则[X]补=000011000B,[Y]补=111000000B,
因为[-Y]补是将[Y]补所有位变反末位加1得到的,所以[-Y]补=001000000B
[X-Y]补=[X]补+[-Y]补=000011000B+001000000B=001011000B
已知:X =+24D,Y =-64D。
求: [X-Y]补 = ?
解:
   [X-Y]补
  = [+24-(-64)]补
  = [24+64]补
  = [88]补 = 0101 1000。
已知: X = +24D,Y =-64D,-Y = 64D。
求:[X-Y]补 = ?
解:按照字长八位处理。
  [X]补  = 0001 1000
  [-Y]补 = 0100 0000
--相加-----------
   得:  0101 1000 = [X-Y]补 = +88D
求给定数值的补码表示分以下两种情况:
(1)正数的补码
与原码相同。
【例1】+9的补码是00001001。(备注:这个+9的补码说的是用8位的2进制来表示补码的,补码表示方式很多,还有16位2进制补码表示形式,以及32位2进制补码表示形式等。)
(2)负数的补码
负数的补码是对其原码逐位取反,但符号位除外;然后整个数加1。
同一个数字在不同的补码表示形式里头,是不同的。比方说-15的补码,在8位2进制里头是11110001,然而在16位2进制补码表示的情况下,就成了1111111111110001。在这篇补码概述里头涉及的补码转换默认了把一个数转换成8位2进制的补码形式,每一种补码表示形式都只能表示有限的数字。
【例2】求-7的补码。
因为给定数是负数,则符号位为“1”。
后七位:-7的原码(10000111)→按位取反(11111000)(负数符号位不变)→加1(11111001)
所以-7的补码是11111001。
已知一个数的补码,求原码的操作分两种情况:
(1)如果补码的符号位为“0”,表示是一个正数,其原码就是补码。
(2)如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。
再举一个例子:求-64的补码
+64:01000000
11000000
【例3】已知一个补码为11111001,则原码是10000111(-7)。
因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”。
其余七位1111001取反后为0000110;
再加1,所以是10000111。
在“闲扯原码、反码、补码”文件中,没有提到一个很重要的概念“模”。我在这里稍微介绍一下“模”
的概念:
“模”是指一个计量系统的计数范围。如时钟等。计算机也可以看成一个计量机器,它也有一个计量范
围,即都存在一个“模”。例如:
时钟的计量范围是0~11,模=12。
表示n位的计算机计量范围是0~2^(n)-1,模=2^(n)。
“模”实质上是计量器产生“溢出”的量,它的值在计量器上表示不出来,计量器上只能表示出模的
余数。任何有模的计量器,均可化减法为加法运算。
例如:
假设当前时针指向10点,而准确时间是6点,调整时间可有以下两种拨法:
一种是倒拨4小时,即:10-4=6
另一种是顺拨8小时:10+8=12+6=6
在以12模的系统中,加8和减4效果是一样的,因此凡是减4运算,都可以用加8来代替。
对“模”而言,8和4互为补数。实际上以12模的系统中,11和1,10和2,9和3,7和5,6和6都有这个特
性。共同的特点是两者相加等于模。
对于计算机,其概念和方法完全一样。n位计算机,设n=8,
所能表示的最大数是11111111,若再
加1称为100000000(9位),但因只有8位,最高位1自然丢失。又回了00000000,所以8位二进制系统的
模为2^8。
在这样的系统中减法问题也可以化成加法问题,只需把减数用相应的补数表示就可以
了。把补数用到计算机对数的处理上,就是补码。
另外两个概念
一的补码(one's
complement)
指的是正数=原码,负数=反码
而二的补码(two's
complement)
指的就是通常所指的补码。
小数补码求法:一种简单的方式,符号位保持1不变,数值位从右边数第一个1及其右边的0保持不变,左边按位取反。
(3).补码的绝对值(称为真值)
【例4】-65的补码是10111111
若直接将10111111转换成十进制,发现结果并不是-65,而是191。
事实上,在计算机内,如果是一个二进制数,其最左边的位是1,则我们可以判定它为负数,并且是用补码表示。
若要得到一个负二进制数的绝对值(称为真值),只要各位(包括符号位)取反,再加1,就得到真值。
如:二进制值:10111111(-65的补码)
各位取反:01000000
加1:01000001(+65的补码)
编辑本段代数加减运算
1、补码加法
[X+Y]补
=
[X]补
+
[Y]补
【例5】X=+0110011,Y=-0101001,求[X+Y]补
[X]补=00110011
[Y]补=11010111
[X+Y]补
=
[X]补
+
[Y]补
=
00110011+11010111=00001010
注:因为计算机中运算器的位长是固定的,上述运算中产生的最高位进位将丢掉,所以结果不是
100001010,而是00001010。
2、补码减法
[X-Y]补
=
[X]补
-
[Y]补
=
[X]补
+
[-Y]补
其中[-Y]补称为负补,求负补的方法是:负数的绝对值的原码所有位按位取反;然后整个数加1。
(恢复本来解释。请路人真正理解并实际验证后再修改。以免误导大众。另外,例6不具典型性,新增例7。)
【例6】1+(-1)
[十进制]
1的原码00000001
转换成补码:00000001
-1的原码10000001
转换成补码:11111111
1+(-1)=0
00000001+11111111=00000000
00000000转换成十进制为0
0=0所以运算正确。
【例7增】-7-(-10)
[十进制]
-7的补码:11111001
-10的补码:11110110
-(-10):按位取反再加1实际上就是其负值的补码,为00001010
-7
-
(-10)=
-7
+
10
=
3
11111001+00001010
=
00000011
转换成十进制为3
3、补码乘法
设被乘数【X】补=X0.X1X2……Xn-1,乘数【Y】补=Y0.Y1Y2……Yn-1,
【X*Y】补=【X】补×【Y】补,即乘数(被乘数)相乘的补码等于补码的相乘。
编辑本段补码的代数解释
任何一个数都可以表示为-a=2^(n-1)-2^(n-1)-a;
这个假设a为正数,那么-a就是负数。而根据二进制转十进制数的方法,我们可以把a表示为:a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2),第(n-1)位为符号位不计算在内。
这里k0,k1,k2,k(n-2)是1或者0,而且这里设a的二进制位数为n位,即其模为2^(n-1),而2^(n-1)其二项展开是:1+2^0+2^1+2^2+……+2^(n-2),而式子:-a=2^(n-1)-2^(n-1)-a中,2^(n-1)-a代入a=k0*2^0+k1*2^1+k2*2^2+……+k(n-2)*2^(n-2)和2^(n-1)=1+2^0+2^1+2^2+……+2^(n-2)两式,2^(n-1)-a=(1-k(n-2))*2^(n-2)+(1-k(n-3))*2^(n-3)+……+(1-k2)*2^2+(1-k1)*2^1+(1-k0)*2^0+1,而这步转化正是取反再加1的规则的代数原理所在。因为这里k0,k1,k2,k3……不是0就是1,所以1-k0,1-k1,1-k2的运算就是二进制下的取反,而为什么要加1,追溯起来就是2^(n-1)的二项展开式最后还有一项1的缘故。而-a=2^(n-1)-2^(n-1)-a中,还有-2^(n-1)这项未解释,这项就是补码里首位的1,首位1在转化为十进制时要乘上2^(n-1),这正是n位二进制的模。
不能贴公式,所以看起来很麻烦,如果写成代数式子看起来是很方便的。
注:n位二进制,最高位为符号位,因此表示的数值范围-2^(n-1)
--2^(n-1)
-1,所以模为2^(n-1)。上面提到的8位二进制模为2^8是因为最高位非符号位,表示的数值范围为0--2^8-1。

-2的补码是多少,怎么算

-2的8位数补码是:11111110。
求负整数的补码,将其原码除符号外的所有位取反(0变1,1变0,符号位为1不变)后加1。
已知一个数的补码,求原码的操作其实就是对该补码再求补码:如果补码的符号位为“0”,表示是一个正数,其原码就是补码。如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。
扩展资料
补码的整数和小数中“0”的表示形式各只有1种,“+0”和“-0”一样,以8位机器数为例,整数的“+0”和“-0”补码为0,0000000;小数的“+0”和“-0”补码为0.0000000。
因为根据定义x为“-0”,以8位机器数为例,为负数求补码,根据公式得2?+(-0),即100000000+(-0),机器数位8位,所以为00000000,跟“+0”得到的补码一样。1,0000000补码,表示的数位-128。
参考资料来源:百度百科-反码
参考资料来源:百度百科-补码

网站数据信息

"2的补码怎么算,补码的补码怎么求?"浏览人数已经达到22次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:2的补码怎么算,补码的补码怎么求?的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!