百度
360搜索
搜狗搜索

三角函数12个基本公式,三角函数公式是什么?详细介绍

本文目录一览: 三角函数12个基本公式

三角函数12个基本公式:sinθ=y/r、cosθ=x/r、tanθ=y/x、cotθ=x/y、secθ=r/x、cscθ=r/y、sina=tana*cosa、cosa=cota*sina、tana=sina*seca、cota=cosa*csca、seca=tana*csca、csca=seca*cota。
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。
其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系称为三角恒等式。
三角函数的反函数:
三角函数的反函数,是多值函数。它们是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x等,各自表示其正弦、余弦、正切、余切、正割、余割为x的角。
为限制反三角函数为单值函数,将反正弦函数的值y限在y=-π/2≤y≤π/2,将y为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2
<y<π 2;反余切函数y="arccot" x的主值限在0<y<π。
反三角函数实际上并不能叫做函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数y=x对称。其概念首先由欧拉提出,并且首先使用了arc+函数名的形式表示反三角函数,而不是f-1(x)。

反三角函数主要是三个:

y=arcsin(x),定义域[-1,1],值域[-π/2,π/2],图象用红色线条。

y=arccos(x),定义域[-1,1],值域[0,π],图象用蓝色线条。

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2),图象用绿色线条。
</y

三角函数公式大全

倒数关系:
  tanα ·cotα=1
  sinα ·cscα=1
  cosα ·secα=1 
  商的关系: 
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  平方关系:
  sin^2(α)+cos^2(α)=1
  1+tan^2(α)=sec^2(α)
  1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
  sin^2(α)+cos^2(α)=1
  tan α *cot α=1
一个特殊公式
  (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
  证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
  =sin(a+θ)*sin(a-θ)
坡度公式
  我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,
  即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作
  a(叫做坡角),那么 i=h/l=tan a.
锐角三角函数公式
  正弦: sin α=∠α的对边/∠α 的斜边
  余弦:cos α=∠α的邻边/∠α的斜边
  正切:tan α=∠α的对边/∠α的邻边
  余切:cot α=∠α的邻边/∠α的对边
二倍角公式
  正弦
  sin2A=2sinA·cosA
  余弦
  1.Cos2a=Cos^2(a)-Sin^2(a)
  2.Cos2a=1-2Sin^2(a)
  3.Cos2a=2Cos^2(a)-1
  即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
  正切
  tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
   sin3α=4sinα·sin(π/3+α)sin(π/3-α)
  cos3α=4cosα·cos(π/3+α)cos(π/3-α)
  tan3a = tan a · tan(π/3+a)· tan(π/3-a)
  三倍角公式推导 
  sin(3a)
  =sin(a+2a)
  =sin2acosa+cos2asina
  =2sina(1-sin2a)+(1-2sin2a)sina
  =3sina-4sin^3a
  cos3a
  =cos(2a+a)
  =cos2acosa-sin2asina
  =(2cos2a-1)cosa-2(1-cos^a)cosa
  =4cos^3a-3cosa
  sin3a=3sina-4sin^3a
  =4sina(3/4-sin2a)
  =4sina[(√3/2)2-sin2a]
  =4sina(sin260°-sin2a)
  =4sina(sin60°+sina)(sin60°-sina)
  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
  =4sinasin(60°+a)sin(60°-a)
  cos3a=4cos^3a-3cosa
  =4cosa(cos2a-3/4)
  =4cosa[cos2a-(√3/2)^2]
  =4cosa(cos2a-cos230°)
  =4cosa(cosa+cos30°)(cosa-cos30°)
  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
  =-4cosasin(a+30°)sin(a-30°)
  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
  =-4cosacos(60°-a)[-cos(60°+a)]
  =4cosacos(60°-a)cos(60°+a)
  上述两式相比可得
  tan3a=tanatan(60°-a)tan(60°+a)
  现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。包括一些图像问题和函数问题中
三倍角公式
  sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)
半角公式
  sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
万能公式
  sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]
其他
  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式
  sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式
  sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式
  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式
  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式
  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式
  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式
  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
N倍角公式
  根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... =>比较两边的实部与虚部 实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数n, 1. cos(nθ): 公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。 2. sin(nθ): (1)当n是奇数时: 公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。 (2)当n是偶数时: 公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。 (例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
半角公式
  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
  sin^2(a/2)=(1-cos(a))/2
  cos^2(a/2)=(1+cos(a))/2
  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
   sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
  cos(α+β)=cosαcosβ-sinαsinβ
  cos(α-β)=cosαcosβ+sinαsinβ
  sin(α+β)=sinαcosβ+cosαsinβ
  sin(α-β)=sinαcosβ -cosαsinβ
积化和差
  sinαsinβ =-[cos(α+β)-cos(α-β)] /2
  cosαcosβ = [cos(α+β)+cos(α-β)]/2
  sinαcosβ = [sin(α+β)+sin(α-β)]/2
  cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
  sh a = [e^a-e^(-a)]/2
  ch a = [e^a+e^(-a)]/2
  th a = sin h(a)/cos h(a)
  公式一:
  设α为任意角,终边相同的角的同一三角函数的值相等:
  sin(2kπ+α)= sinα
  cos(2kπ+α)= cosα
  tan(2kπ+α)= tanα
  cot(2kπ+α)= cotα
  公式二:
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)= -sinα
  cos(π+α)= -cosα
  tan(π+α)= tanα
  cot(π+α)= cotα
  公式三:
  任意角α与 -α的三角函数值之间的关系:
  sin(-α)= -sinα
  cos(-α)= cosα
  tan(-α)= -tanα
  cot(-α)= -cotα
  公式四:
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)= sinα
  cos(π-α)= -cosα
  tan(π-α)= -tanα
  cot(π-α)= -cotα
  公式五:
  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)= -sinα
  cos(2π-α)= cosα
  tan(2π-α)= -tanα
  cot(2π-α)= -cotα
  公式六:
  π/2±α及3π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)= cosα
  cos(π/2+α)= -sinα
  tan(π/2+α)= -cotα
  cot(π/2+α)= -tanα
  sin(π/2-α)= cosα
  cos(π/2-α)= sinα
  tan(π/2-α)= cotα
  cot(π/2-α)= tanα
  sin(3π/2+α)= -cosα
  cos(3π/2+α)= sinα
  tan(3π/2+α)= -cotα
  cot(3π/2+α)= -tanα
  sin(3π/2-α)= -cosα
  cos(3π/2-α)= -sinα
  tan(3π/2-α)= cotα
  cot(3π/2-α)= tanα
  (以上k∈Z)
  A·sin(ωt+θ)+ B·sin(ωt+φ) =
  √{(A2 +B2 +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }
  √表示根号,包括{……}中的内容
三角函数的诱导公式(六公式)
  公式一 sin(-α) = -sinα
  cos(-α) = cosα
  tan (-α)=-tanα
  公式二sin(π/2-α) = cosα
  cos(π/2-α) = sinα
  公式三 sin(π/2+α) = cosα
  cos(π/2+α) = -sinα
  公式四sin(π-α) = sinα
  cos(π-α) = -cosα
  公式五sin(π+α) = -sinα
  cos(π+α) = -cosα
  公式六tanA= sinA/cosA
  tan(π/2+α)=-cotα
  tan(π/2-α)=cotα
  tan(π-α)=-tanα
  tan(π+α)=tanα
  诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
  sinα=2tan(α/2)/[1+(tan(α/2))2]
  cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2]
  tanα=2tan(α/2)/[1-(tan(α/2))2]
  
其它公式
   (1) (sinα)^2+(cosα)^2=1(平方和公式)
  (2)1+(tanα)^2=(secα)^2
  (3)1+(cotα)^2=(cscα)^2
  证明下面两式,只需将一式,左右同除(sinα)^2,第二个除(cosα)^2即可
  (4)对于任意非直角三角形,总有
  tanA+tanB+tanC=tanAtanBtanC
  证:
  A+B=π-C
  tan(A+B)=tan(π-C)
  (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)
  整理可得
  tanA+tanB+tanC=tanAtanBtanC
  得证
  同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立
  由tanA+tanB+tanC=tanAtanBtanC可得出以下结论
  (5)cotAcotB+cotAcotC+cotBcotC=1
  (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2)
  (7)(cosA)^2;+(cosB)^2+(cosC)^2=1-2cosAcosBcosC
  (8)(sinA)^2+(sinB)^2+(sinC)^2=2+2cosAcosBcosC
  其他非重点三角函数 
  csc(a) = 1/sin(a)
  sec(a) = 1/cos(a)
  (seca)^2+(csca)^2=(seca)^2(csca)^2
  幂级数展开式
  sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)*(x^(2k-1))/(2k-1)!+……。 (-∞
<x<∞)
  cos x = 1-x^2/2!+x^4/4!-……+(-1)k*(x^(2k))/(2k)!+…… (-∞
<x<∞)
  arcsin x = x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + ……(|x|<1)

  arccos x = π - ( x + 1/2*x^3/3 + 1*3/(2*4)*x^5/5 + …… ) (|x|<1)

  arctan x = x - x^3/3 + x^5/5 -……(x≤1)

  无限公式

  sinx=x(1-x^2/π^2)(1-x^2/4π^2)(1-x^2/9π^2)……

  cosx=(1-4x^2/π^2)(1-4x^2/9π^2)(1-4x^2/25π^2)……

  tanx=8x[1/(π^2-4x^2)+1/(9π^2-4x^2)+1/(25π^2-4x^2)+……]

  secx=4π[1/(π^2-4x^2)-1/(9π^2-4x^2)+1/(25π^2-4x^2)-+……]

  (sinx)x=cosx/2cosx/4cosx/8……

  (1/4)tanπ/4+(1/8)tanπ/8+(1/16)tanπ/16+……=1/π

  arctan x = x - x^3/3 + x^5/5 -……(x≤1)

  和自变量数列求和有关的公式

  sinx+sin2x+sin3x+……+sinnx=[sin(nx/2)sin((n+1)x/2)]/sin(x/2)

  cosx+cos2x+cos3x+……+cosnx=[cos((n+1)x/2sin(nx/2)]/sin(x/2)

  tan((n+1)x/2)=(sinx+sin2x+sin3x+……+sinnx)/(cosx+cos2x+cos3x+……+cosnx)

  sinx+sin3x+sin5x+……+sin(2n-1)x=(sinnx)^2/sinx

  cosx+cos3x+cos5x+……+cos(2n-1)x=sin(2nx)/(2sinx)

编辑本段

内容规律

  三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

  1.三角函数本质:

   [1] 根据右图,有

  sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。

  深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导

  sin(A+B) = sinAcosB+cosAsinB 为例:

  推导:

  首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。

  A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β))

  OA'=OA=OB=OD=1,D(1,0)

  ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2

  和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2)

  单位圆定义

  单位圆

  六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是:

  图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。

  两角和公式

   sin(A+B) = sinAcosB+cosAsinB

  sin(A-B) = sinAcosB-cosAsinB

  cos(A+B) = cosAcosB-sinAsinB

  cos(A-B) = cosAcosB+sinAsinB

  tan(A+B) = (tanA+tanB)/(1-tanAtanB)

  tan(A-B) = (tanA-tanB)/(1+tanAtanB)

  cot(A+B) = (cotAcotB-1)/(cotB+cotA)

  cot(A-B) = (cotAcotB+1)/(cotB-cotA)

同角三角函数的基本关系

倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1 商的关系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系: sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)

平常针对不同条件的常用的两个公式

sin2 α+cos2 α=1 tan α *cot α=1

一个特殊公式

(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ) 证明:(sina+sinθ)*(sina+sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2] =sin(a+θ)*sin(a-θ)

锐角三角函数公式

正弦: sin α=∠α的对边/∠α 的斜边 余弦:cos α=∠α的邻边/∠α的斜边 正切:tan α=∠α的对边/∠α的邻边 余切:cot α=∠α的邻边/∠α的对边

二倍角公式

正弦 sin2A=2sinA·cosA 余弦 1.Cos2a=Cos^2(a)-Sin^2(a) =2Cos^2(a)-1 =1-2Sin^2(a) 2.Cos2a=1-2Sin^2(a) 3.Cos2a=2Cos^2(a)-1 正切 tan2A=(2tanA)/(1-tan^2(A))

三倍角公式

阅读更多 >>>  cscx等于什么公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin(3a) =sin(a+2a) =sin2acosa+cos2asina =2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin^3a cos3a =cos(2a+a) =cos2acosa-sin2asina =(2cos2a-1)cosa-2(1-cos^a)cosa =4cos^3a-3cosa sin3a=3sina-4sin^3a =4sina(3/4-sin2a) =4sina[(√3/2)2-sin2a] =4sina(sin260°-sin2a) =4sina(sin60°+sina)(sin60°-sina) =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2] =4sinasin(60°+a)sin(60°-a) cos3a=4cos^3a-3cosa =4cosa(cos2a-3/4) =4cosa[cos2a-(√3/2)^2] =4cosa(cos2a-cos230°) =4cosa(cosa+cos30°)(cosa-cos30°) =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]} =-4cosasin(a+30°)sin(a-30°) =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)] =-4cosacos(60°-a)[-cos(60°+a)] =4cosacos(60°-a)cos(60°+a) 上述两式相比可得 tan3a=tanatan(60°-a)tan(60°+a)

n倍角公式

sin(n a)=Rsina sin(a+π/n)……sin(a+(n-1)π/n)。 其中R=2^(n-1) 证明:当sin(na)=0时,sina=sin(π/n)或=sin(2π/n)或=sin(3π/n)或=……或=sin【(n-1)π/n】 这说明sin(na)=0与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】=0是同解方程。 所以sin(na)与{sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1)π/n】成正比。 而(sina+sinθ)*(sina+sinθ)=sin(a+θ)*sin(a-θ),所以 {sina-sin(π/n)}*{sina-sin(2π/n)}*{sina-sin(3π/n)}*……*{sina- sin【(n-1π/n】 与sina sin(a+π/n)……sin(a+(n-1)π/n)成正比(系数与n有关 ,但与a无关,记为Rn)。 然后考虑sin(2n a)的系数为R2n=R2*(Rn)^2=Rn*(R2)^n.易证R2=2,所以Rn= 2^(n-1)

半角公式

tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA); cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA. sin^2(a/2)=(1-cos(a))/2 cos^2(a/2)=(1+cos(a))/2 tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

和差化积

sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2] cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2] cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2] tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB) tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

两角和公式

cos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβsin(α+β)=sinαcosβ+cosαsinβsin(α-β)=sinαcosβ -cosαsinβ

积化和差

sinαsinβ = [cos(α-β)-cos(α+β)] /2 cosαcosβ = [cos(α+β)+cos(α-β)]/2 sinαcosβ = [sin(α+β)+sin(α-β)]/2 cosαsinβ = [sin(α+β)-sin(α-β)]/2

双曲函数

sinh(a) = [e^a-e^(-a)]/2 cosh(a) = [e^a+e^(-a)]/2 tanh(a) = sin h(a)/cos h(a) 公式一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)= sinα cos(2kπ+α)= cosα tan(2kπ+α)= tanα cot(2kπ+α)= cotα 公式二: 设α为任意角,π+α的三角函数值与α的三角函数值之间的关系: sin(π+α)= -sinα cos(π+α)= -cosα tan(π+α)= tanα cot(π+α)= cotα 公式三: 任意角α与 -α的三角函数值之间的关系: sin(-α)= -sinα cos(-α)= cosα tan(-α)= -tanα cot(-α)= -cotα 公式四: 利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)= sinα cos(π-α)= -cosα tan(π-α)= -tanα cot(π-α)= -cotα 公式五: 利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)= -sinα cos(2π-α)= cosα tan(2π-α)= -tanα cot(2π-α)= -cotα 公式六: π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα (以上k∈Z) A·sin(ωt+θ)+ B·sin(ωt+φ) = √{(A2 +B2 +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} } √表示根号,包括{……}中的内容

诱导公式

sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα sin(π/2-α) = cosα cos(π/2-α) = sinα sin(π/2+α) = cosα cos(π/2+α) = -sinα sin(π-α) = sinα cos(π-α) = -cosα sin(π+α) = -sinα cos(π+α) = -cosα tanA= sinA/cosA tan(π/2+α)=-cotα tan(π/2-α)=cotα tan(π-α)=-tanα tan(π+α)=tanα 诱导公式记背诀窍:奇变偶不变,符号看象限

万能公式

sinα=2tan(α/2)/[1+(tan(α/2))2] cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2] tanα=2tan(α/2)/[1-(tan(α/2))2]

其它公式

(1) (sinα)2+(cosα)2=1 (2)1+(tanα)2=(secα)2 (3)1+(cotα)2=(cscα)2 证明下面两式,只需将一式,左右同除(sinα)2,第二个除(cosα)2即可 (4)对于任意非直角三角形,总有 tanA+tanB+tanC=tanAtanBtanC 证: A+B=π-C tan(A+B)=tan(π-C) (tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC) 整理可得 tanA+tanB+tanC=tanAtanBtanC 得证 同样可以得证,当x+y+z=nπ(n∈Z)时,该关系式也成立 由tanA+tanB+tanC=tanAtanBtanC可得出以下结论 (5)cotAcotB+cotAcotC+cotBcotC=1 (6)cot(A/2)+cot(B/2)+cot(C/2)=cot(A/2)cot(B/2)cot(C/2) (7)(cosA)2+(cosB)2+(cosC)2=1-2cosAcosBcosC (8)(sinA)2+(sinB)2+(sinC)2=2+2cosAcosBcosC 其他非重点三角函数 csc(a) = 1/sin(a) sec(a) = 1/cos(a)

编辑本段内容规律

三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在. 1、三角函数本质:

[1] 根据右图,有 sinθ=y/ r; cosθ=x/r; tanθ=y/x; cotθ=x/y。 深刻理解了这一点,下面所有的三角公式都可以从这里出发推导出来,比如以推导 sin(A+B) = sinAcosB+cosAsinB 为例: 推导: 首先画单位圆交X轴于C,D,在单位圆上有任意A,B点。角AOD为α,BOD为β,旋转AOB使OB与OD重合,形成新A'OD。 A(cosα,sinα),B(cosβ,sinβ),A'(cos(α-β),sin(α-β)) OA'=OA=OB=OD=1,D(1,0) ∴[cos(α-β)-1]^2+[sin(α-β)]^2=(cosα-cosβ)^2+(sinα-sinβ)^2 和差化积及积化和差用还原法结合上面公式可推出(换(a+b)/2与(a-b)/2) 单位圆定义 单位圆 六个三角函数也可以依据半径为一中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在 0 和 π/2 弧度之间的角。它也提供了一个图象,把所有重要的三角函数都包含了。根据勾股定理,单位圆的等式是: 图象中给出了用弧度度量的一些常见的角。逆时针方向的度量是正角,而顺时针的度量是负角。设一个过原点的线,同 x 轴正半部分得到一个角 θ,并与单位圆相交。这个交点的 x 和 y 坐标分别等于 cos θ 和 sin θ。图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = x/1。单位圆可以被视为是通过改变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。 两角和公式

sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

http://baike.baidu.com/view/959840.htm

百科中写得还蛮详细的,

两角和公式

三角和公式

sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

和差化积

积化和差

sinαsinβ=-[cos(α+β)-cos(α-β)] /2

cosαcosβ=[cos(α+β)+cos(α-β)]/2

sinαcosβ=[sin(α+β)+sin(α-β)]/2

cosαsinβ=[sin(α+β)-sin(α-β)]/2

诱导公式

三角函数的诱导公式(六公式)

  公式一: 

  sin(α+k*2π)=sinα

cos(α+k*2π)=cosα

tan(α+k*π)=tanα

  公式二:

sin(π+α) = -sinα

  cos(π+α) = -cosα

tan(π+α)=tanα

  公式三:

  sin(-α) = -sinα

  cos(-α) = cosα

  tan (-α)=-tanα

  公式四:

  sin(π-α) = sinα

  cos(π-α) = -cosα

tan(π-α) =-tanα

  公式五:

  sin(π/2-α) = cosα

cos(π/2-α) =sinα

由于π/2+α=π-(π/2-α),由公式四和公式五可得

  公式六:

  sin(π/2+α) = cosα

cos(π/2+α) = -sinα

  诱导公式 记背诀窍:奇变偶不变,符号看象限。

倍角公式

二倍角

正弦

sin2A=2sinA·cosA

余弦

三倍角

三倍角公式

sin3α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cosα·cos(π/3+α)cos(π/3-α)

tan3a = tan a · tan(π/3+a)· tan(π/3-a)

三倍角公式推导

sin(3a)

=sin(a+2a)

=sin2acosa+cos2asina

=2sina(1-sin^2a)+(1-2sin^2a)sina

=3sina-4sin^3a

cos3a

=cos(2a+a)

=cos2acosa-sin2asina

=(2cos^2a-1)cosa-2(1-cos^2a)cosa

=4cos^3a-3cosa

sin3a=3sina-4sin^3a

=4sina(3/4-sin^2a)

=4sina[(√3/2)-sina][(√3/2)+sina]

=4sina(sin60°+sina)(sin60°-sina)

=4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°+a)/2]

=4sinasin(60°+a)sin(60°-a)

cos3a=4cos^3a-3cosa

=4cosa(cos^2a-3/4)

=4cosa[cos^2a-(√3/2)^2]

=4cosa(cosa-cos30°)(cosa+cos30°)

=4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}

=-4cosasin(a+30°)sin(a-30°)

=-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

=-4cosacos(60°-a)[-cos(60°+a)]

=4cosacos(60°-a)cos(60°+a)

上述两式相比可得

tan3a=tanatan(60°-a)tan(60°+a)

三倍角

sin3α=3sinα-4sin^3 α=4sinα·sin(π/3+α)sin(π/3-α)

cos3α=4cos^3 α-3cosα=4cosα·cos(π/3+α)cos(π/3-α)

tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)

其他多倍角

四倍角

sin4A=-4*(cosA*sinA*(2*sinA^2-1))

cos4A=1+(-8*cosA^2+8*cosA^4)

tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)

五倍角

sin5A=16sinA^5-20sinA^3+5sinA

cos5A=16cosA^5-20cosA^3+5cosA

tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)

六倍角

sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2))

cos6A=((-1+2*cosA)*(16*cosA^4-16*cosA^2+1))

tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA-15*tanA^4+tanA^6)

七倍角

sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6))

cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7))

tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)

八倍角

sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1))

cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2)

tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)

九倍角

sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3))

cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3))

tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)

十倍角

sin10A = 2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4))

cos10A = ((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1))

tan10A = -2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)

三角函数公式大全见下图

三角函数(也叫做"圆函数")是角的函数;它们在研究三角形和建模周期现象和许多其他应用中是很重要的。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

三角函数公式有积化和差公式、和差化积公式、三倍角公式、正弦二倍角公式、余弦二倍角公式、余弦定理等。1积化和差公式。sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)];cosα·sinβ=(1/2)*[sin(α+β)-sin(α-β)];cosα·cosβ=(1/2)*[cos(α+β)+cos(α-β)];sinα·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]2、和差化积公式。sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]3三倍角公式。sin3α=3sinα-4sin^3α:cos3α=4cos^3α-3cosα4两角和与差的三角函数关系sin(α+β)=sinαcosβ+cosαsinβ;sin(α-β)=sinαcosβ-cosαsinβ;cos(α+β)=cosαcosβ-sinαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ);tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
</x<∞)
</x<∞)

阅读更多 >>>  高中完整的三角函数值表,三角函数值公式表

初中的几何中三角函数公式 ,

关于初中三角函数公式,在考试中用的最多的就是特殊三角度数的特殊值。这些公式最好背诵,多加练习,灵活运用,如:
sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3[1]
cot30°=√3
cot45°=1
cot60°=√3/3
其次就是两角和公式,这是在初中数学考试中问答题中容易用到的三角函数公式。
两角和公式
1、sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA
2、cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB
3、tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)
4、ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)
扩展资料
其它关于函数的公式
倍角公式
1、tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctga
2、cos2a=cos2a-sin2a=2cos2a-1=1-2sin2a
半角公式
1、sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)
2、cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)
3、tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))
4、ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))
和差化积
1、2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)
2、2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)
3、sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)
4、tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosB
5ctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB
是要特殊的三角函数公式还是普通的?
普通的:正弦=对边比斜边
余弦=邻边比斜边
正切=对边比邻边
特殊的:sin30°=1/2
sin45°=√2/2
sin60°=√3/2
cos30°=√3/2
cos45°=√2/2
cos60°=1/2
tan30°=√3/3
tan45°=1
tan60°=√3
初中应该就这些吧,我们初中就学了这些。
sin \ cos \ tg \ ctg
1、常用的三角函数公式
sin =对边 / 斜边
cos =邻边 / 斜边
tan =对边 / 邻边
cot =邻边 / 对边
2、倍角公式
Sin2A=2SinACosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A) )
3、三倍角公式
sin3=4sinsin(/3+)sin(/3-)
cos3=4coscos(/3+)cos(/3-)
tan3a = tan a tan(/3+a) tan(/3-a)
扩展资料:
其他不常用的三角函数公式:
1、降幂公式
sin^2()=(1-cos(2))/2=versin(2)/2
cos^2()=(1+cos(2))/2=covers(2)/2
tan^2()=(1-cos(2))/(1+cos(2))
2、和差化积
sin+sin = 2 sin[(+)/2] cos[(-)/2]
sin-sin = 2 cos[(+)/2] sin[(-)/2]
cos+cos = 2 cos[(+)/2] cos[(-)/2]
cos-cos = -2 sin[(+)/2] sin[(-)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
3、积化和差
sinsin = [cos(-)-cos(+)] /2
coscos = [cos(+)+cos(-)]/2
sincos = [sin(+)+sin(-)]/2
cossin = [sin(+)-sin(-)]/2

三角函数公式是什么?

数学三角函数公式如下:
一、倍角公式。
1、Sin2A=2SinA*CosA。
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1。
3、tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))。
二、降幂公式。
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2。
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2。
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))。
三、推导公式。
1、1tanα+cotα=2/sin2α。
2、tanα-cotα=-2cot2α。
3、1+cos2α=2cos^2α。
4、、4-cos2α=2sin^2α。
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina。
四、两角和差。
1、1cos(α+β)=cosα·cosβ-sinα·sinβ。
2、cos(α-β)=cosα·cosβ+sinα·sinβ。
3、sin(α±β)=sinα·cosβ±cosα·sinβ。
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)。
五、和差化积。
1、sinθ+sinφ=2 sin cos。
2、sinθ-sinφ=2 cos sin。
3、cosθ+cosφ=2 cos cos。
4、cosθ-cosφ=-2 sin sin。
5、tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)。
1、sin(-α)=-sinα
2、cos(-α)=cosα
3、sin(π/2-α)=cosα
4、cos(π/2-α)=sinα
5、sin(π/2+α)=cosα
6、cos(π/2+α)=-sinα
7、sin(π-α)=sinα
8、cos(π-α)=-cosα
9、sin(π+α)=-sinα
10、tanα=sinα/cosα
11、tan(π/2+α)=-cotα
12、tan(π/2-α)=cotα
13、tan(π-α)=-tanα
14、tan(π+α)=tanα
扩展资料:
常用的和角公式
1、sin(α+β)=sinαcosβ+ sinβcosα
2、sin(α-β)=sinαcosβ-sinB*cosα
3、cos(α+β)=cosαcosβ-sinαsinβ
4、cos(α-β)=cosαcosβ+sinαsinβ
5、tan(α+β)=(tanα+tanβ) / (1-tanαtanβ)
三角函数常用公式:(^表示乘方,例如^2表示平方)
正弦函数 sinθ=y/r
余弦函数 cosθ=x/r
正切函数 tanθ=y/x
余切函数 cotθ=x/y
正割函数 secθ=r/x
余割函数 cscθ=r/y
以及两个不常用,已趋于被淘汰的函数:
正矢函数 versinθ =1-cosθ
余矢函数 vercosθ =1-sinθ
同角三角函数间的基本关系式:
·平方关系:
sin^2(α)+cos^2(α)=1
tan^2(α)+1=sec^2(α)
cot^2(α)+1=csc^2(α)
·积的关系:
sinα=tanα*cosα
cosα=cotα*sinα
tanα=sinα*secα
cotα=cosα*cscα
secα=tanα*cscα
cscα=secα*cotα
·倒数关系:
tanα·cotα=1
sinα·cscα=1
cosα·secα=1
直角三角形ABC中,
角A的正弦值就等于角A的对边比斜边,
余弦等于角A的邻边比斜边
正切等于对边比邻边,
三角函数恒等变形公式
·两角和与差的三角函数:
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
·辅助角公式:
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
·倍角公式:
sin(2α)=2sinα·cosα=2/(tanα+cotα)
cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)
tan(2α)=2tanα/[1-tan^2(α)]
·三倍角公式:
sin(3α)=3sinα-4sin^3(α)
cos(3α)=4cos^3(α)-3cosα
·半角公式:
sin(α/2)=±√((1-cosα)/2)
cos(α/2)=±√((1+cosα)/2)
tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα
·降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=vercos(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
·万能公式:
sinα=2tan(α/2)/[1+tan^2(α/2)]
cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]
tanα=2tan(α/2)/[1-tan^2(α/2)]
·积化和差公式:
sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]
·和差化积公式:
sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]
诱导公式是指三角函数中,利用周期性将角度比较大的三角函数,转换为角度比较小的三角函数的公式。 诱导公式有六组,共54个。
公式一
终边相同的角的同一三角函数的值相等。
设α为任意锐角,角度制下的角的表示:
sin (α+k·360°)=sinα(k∈Z). cos(α+k·360°)=cosα(k∈Z).
tan (α+k·360°)=tanα(k∈Z). cot(α+k·360°)=cotα (k∈Z).
sec(α+k·360°)=secα (k∈Z). csc(α+k·360°)=cscα (k∈Z).
公式二
π+α的三角函数值与α的三角函数值之间的关系。
设α为任意角,弧度制下的角的表示:
sin(π+α)=-sinα. cos(π+α)=-cosα. tan(π+α)=tanα.
cot(π+α)=cotα. sec(π+α)=-secα. csc(π+α)=-cscα.
角度制下的角的表示:
sin(180°+α)=-sinα. cos(180°+α)=-cosα. tan(180°+α)=tanα.
cot(180°+α)=cotα. sec(180°+α)=-secα. csc(180°+α)=-cscα
请点击输入图片描述
常用的诱导公式有以下几组:
1.sinα^2 +cosα^2=1
2.sinα/cosα=tanα
3.tanα=1/cotα
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
公式五:
利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
tan(π/2+α)=-cotα
cot(π/2+α)=-tanα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
tan(π/2-α)=cotα
cot(π/2-α)=tanα
sin(3π/2+α)=-cosα
cos(3π/2+α)=sinα
tan(3π/2+α)=-cotα
cot(3π/2+α)=-tanα
sin(3π/2-α)=-cosα
cos(3π/2-α)=-sinα
tan(3π/2-α)=cotα
cot(3π/2-α)=tanα
(以上k∈Z)
常用公式
口诀;奇变偶不变,符号看象限
一般的最常用公式有:
Sin(A+B)=SinA*CosB+SinB*CosA
Sin(A-B)=SinA*CosB-SinB*CosA
Cos(A+B)=CosA*CosB-SinA*SinB
Cos(A-B)=CosA*CosB+SinA*SinB
反三角函数公式
  1、arcsin(-x)=-arcsinx。
  2、arccos(-x)=π-arccosx。
  3、arctan(-x)=-arctanx。
  4、arccot(-x)=π-arccotx。
  5、arcsinx+arccosx=π/2=arctanx+arccotx。
  6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)。
  7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x。
  8、当x∈〔0,π〕,arccos(cosx)=x。
  9、x∈(—π/2,π/2),arctan(tanx)=x。
  10、x∈(0,π),arccot(cotx)=x。
  11、x〉0,arctanx=arctan1/x。
  12、若(arctanx+arctany)∈(—π/2,π/2),则arctanx+arctany=arctan(x+y/1-xy)。

三角函数关系公式

三角函数关系公式如下:
正弦(sin)等于对边比斜边;sinA=a/c ;余弦(cos)等于邻边比斜边;cosA=b/c ;正切(tan)等于对边比邻边;tanA=a/b ;余切(cot)等于邻边比对边;cotA=b/a。
三角函数将直角三角形的内角和它的两个边的比值相关联,也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
三角函数特殊角:
在三角函数中,有一些特殊角,例如30°、45°、60°,这些角的三角函数值为简单单项式,计算中可以直接求出具体的值。弧度的单位rad其实是个并没有单独现实意义的单位,它代表这个大小的角度,在单位圆中对应的弧长;比如某个圆的半径为r,对于大小为a rad的角。
周期函数的最小正周期叫做这个函数的“基本周期”。正弦、余弦、正割或余割的基本周期是全圆,也就是 2π弧度或 360°。

阅读更多 >>>  反函数公式大全表格,怎样excel求自然对数的反函数?

高中数学三角函数公式是什么?

高中数学三角函数必背公式如下:1、高中三角函数公式大全:两角和公式、倍角公式、三倍角公式、半角公式2、高中三角函数公式大全:和差化积、积化和差3、高中三角函数公式大全:诱导公式、万能公式4、高中三角函数公式大全:其他公式、其他非重点三角函数、双曲函数5、6、7、8、9、10、11、12、三角函数包括两个部扰芦分:三角与三角函数、解三角形分析。重点的知识点包括:任意角的三角函数;同角三角函数的基本关系式;诱导公式;三角函数的图象及其变换;三角函数的性质及其应用;三角函数的求值与化简;正弦、余弦定理;解三角形及其综。三角与三角函数包括任意角及其三角函数、同角关系式和诱导公式、正弦及正弦型函数、余与正切函数、三角恒等变换和三角综合。重点考查基础知识和基本技能,突出角与代数、几何、向量等知识点的联缓昌带系,题型难度属于容易或中等。解三角形正弦定理和余弦定理是解三角形的两个重要定理,应用这两个定理,
三角函数诱导公式:
三角函数的基本公式:
1、公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα
2、公式二:sin(π+α)=—sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα
3、公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα
4、公式四:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα
5、公式五:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα

三角函数正弦余弦公式大全

三角函数正弦余弦公式大全:
一 . 三角函数正弦余弦公式
正弦sin=对边比斜边、余弦cos=邻边比斜边、正切tan=对边比邻边、余切cot=邻边比对边 。
以下图为例,在Rt△ABC(直角三角形)中,任意一锐角∠A,它的对边与斜边的比叫作∠A的正弦,记作sinA;∠A的邻边与斜边的比叫作∠A的余弦,记作cosA;∠A的对边与邻边的比叫作∠A的正切,记作tanA;∠A的斜边与对边的比叫作∠A的余切,记作cotA。
二 . 特殊角的正弦、余弦、正切函数值表
正弦函数值:30度是二分之一;45度是二分之根号二;60度是二分之根号三;sin0=sin0°=0。
余弦函数值:30度是二分之根号三;45度是二分之根号二;60度是二分之一。
正切函数值:30度是三分之根号三;45度是一;60度是根号三。
正弦、余弦只是三角函数中的其中2-3个变量。后续还会涉及到其它以此为基础的公式,各位同学打好基础,一起进步。

三角函数基本公式是什么?

三角函数公式:
sin(α+β)=sinαcosβ+cosαsinβ。
sin(α-β)=sinαcosβ-cosαsinβ。
cos(α+β)=cosαcosβ-sinαsinβ。
cos(α-β)=cosαcosβ+sinαsinβ。
tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)。
tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)。
cos公式的其他资料:
它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1,余弦函数是偶函数,其图像关于y轴对称。
利用余弦定理,可以解决以下两类有关三角形的问题:
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两个角。

三角函数的基本公式

倒数关系:
  tanα ·cotα=1
  sinα ·cscα=1
  cosα ·secα=1 
  商的关系: 
  sinα/cosα=tanα=secα/cscα
  cosα/sinα=cotα=cscα/secα
  平方关系:
  sin^2(α)+cos^2(α)=1
  1+tan^2(α)=sec^2(α)
  1+cot^2(α)=csc^2(α)
平常针对不同条件的常用的两个公式
  sin^2(α)+cos^2(α)=1
  tan α *cot α=1
一个特殊公式
  (sina+sinθ)*(sina-sinθ)=sin(a+θ)*sin(a-θ)
  证明:(sina+sinθ)*(sina-sinθ)=2 sin[(θ+a)/2] cos[(a-θ)/2] *2 cos[(θ+a)/2] sin[(a-θ)/2]
  =sin(a+θ)*sin(a-θ)
坡度公式
  我们通常半坡面的铅直高度h与水平高度l的比叫做坡度(也叫坡比), 用字母i表示,
  即 i=h / l, 坡度的一般形式写成 l : m 形式,如i=1:5.如果把坡面与水平面的夹角记作
  a(叫做坡角),那么 i=h/l=tan a.
锐角三角函数公式
  正弦: sin α=∠α的对边/∠α 的斜边
  余弦:cos α=∠α的邻边/∠α的斜边
  正切:tan α=∠α的对边/∠α的邻边
  余切:cot α=∠α的邻边/∠α的对边
二倍角公式
  正弦
  sin2A=2sinA·cosA
  余弦
  1.Cos2a=Cos^2(a)-Sin^2(a)
  2.Cos2a=1-2Sin^2(a)
  3.Cos2a=2Cos^2(a)-1
  即Cos2a=Cos^2(a)-Sin^2(a)=2Cos^2(a)-1=1-2Sin^2(a)
  正切
  tan2A=(2tanA)/(1-tan^2(A))
三倍角公式
   sin3α=4sinα·sin(π/3+α)sin(π/3-α)
  cos3α=4cosα·cos(π/3+α)cos(π/3-α)
  tan3a = tan a · tan(π/3+a)· tan(π/3-a)
  三倍角公式推导 
  sin(3a)
  =sin(a+2a)
  =sin2acosa+cos2asina
  =2sina(1-sin2a)+(1-2sin2a)sina
  =3sina-4sin^3a
  cos3a
  =cos(2a+a)
  =cos2acosa-sin2asina
  =(2cos2a-1)cosa-2(1-cos^a)cosa
  =4cos^3a-3cosa
  sin3a=3sina-4sin^3a
  =4sina(3/4-sin2a)
  =4sina[(√3/2)2-sin2a]
  =4sina(sin260°-sin2a)
  =4sina(sin60°+sina)(sin60°-sina)
  =4sina*2sin[(60+a)/2]cos[(60°-a)/2]*2sin[(60°-a)/2]cos[(60°-a)/2]
  =4sinasin(60°+a)sin(60°-a)
  cos3a=4cos^3a-3cosa
  =4cosa(cos2a-3/4)
  =4cosa[cos2a-(√3/2)^2]
  =4cosa(cos2a-cos230°)
  =4cosa(cosa+cos30°)(cosa-cos30°)
  =4cosa*2cos[(a+30°)/2]cos[(a-30°)/2]*{-2sin[(a+30°)/2]sin[(a-30°)/2]}
  =-4cosasin(a+30°)sin(a-30°)
  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]
  =-4cosacos(60°-a)[-cos(60°+a)]
  =4cosacos(60°-a)cos(60°+a)
  上述两式相比可得
  tan3a=tanatan(60°-a)tan(60°+a)
  现列出公式如下: sin2α=2sinαcosα tan2α=2tanα/(1-tan^2(α)) cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α) 可别轻视这些字符,它们在数学学习中会起到重要作用。包括一些图像问题和函数问题中
三倍角公式
  sin3α=3sinα-4sin^3(α)=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cos^3(α)-3cosα=4cosα·cos(π/3+α)cos(π/3-α) tan3α=tan(α)*(-3+tan(α)^2)/(-1+3*tan(α)^2)=tan a · tan(π/3+a)· tan(π/3-a)
半角公式
  sin^2(α/2)=(1-cosα)/2 cos^2(α/2)=(1+cosα)/2 tan^2(α/2)=(1-cosα)/(1+cosα) tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα
万能公式
  sinα=2tan(α/2)/[1+tan^2(α/2)] cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)] tanα=2tan(α/2)/[1-tan^2(α/2)]
其他
  sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0 cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及 sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2 tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0
四倍角公式
  sin4A=-4*(cosA*sinA*(2*sinA^2-1)) cos4A=1+(-8*cosA^2+8*cosA^4) tan4A=(4*tanA-4*tanA^3)/(1-6*tanA^2+tanA^4)
五倍角公式
  sin5A=16sinA^5-20sinA^3+5sinA cos5A=16cosA^5-20cosA^3+5cosA tan5A=tanA*(5-10*tanA^2+tanA^4)/(1-10*tanA^2+5*tanA^4)
六倍角公式
  sin6A=2*(cosA*sinA*(2*sinA+1)*(2*sinA-1)*(-3+4*sinA^2)) cos6A=((-1+2*cosA^2)*(16*cosA^4-16*cosA^2+1)) tan6A=(-6*tanA+20*tanA^3-6*tanA^5)/(-1+15*tanA^2-15*tanA^4+tanA^6)
七倍角公式
  sin7A=-(sinA*(56*sinA^2-112*sinA^4-7+64*sinA^6)) cos7A=(cosA*(56*cosA^2-112*cosA^4+64*cosA^6-7)) tan7A=tanA*(-7+35*tanA^2-21*tanA^4+tanA^6)/(-1+21*tanA^2-35*tanA^4+7*tanA^6)
八倍角公式
  sin8A=-8*(cosA*sinA*(2*sinA^2-1)*(-8*sinA^2+8*sinA^4+1)) cos8A=1+(160*cosA^4-256*cosA^6+128*cosA^8-32*cosA^2) tan8A=-8*tanA*(-1+7*tanA^2-7*tanA^4+tanA^6)/(1-28*tanA^2+70*tanA^4-28*tanA^6+tanA^8)
九倍角公式
  sin9A=(sinA*(-3+4*sinA^2)*(64*sinA^6-96*sinA^4+36*sinA^2-3)) cos9A=(cosA*(-3+4*cosA^2)*(64*cosA^6-96*cosA^4+36*cosA^2-3)) tan9A=tanA*(9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8)/(1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8)
十倍角公式
  sin10A=2*(cosA*sinA*(4*sinA^2+2*sinA-1)*(4*sinA^2-2*sinA-1)*(-20*sinA^2+5+16*sinA^4)) cos10A=((-1+2*cosA^2)*(256*cosA^8-512*cosA^6+304*cosA^4-48*cosA^2+1)) tan10A=-2*tanA*(5-60*tanA^2+126*tanA^4-60*tanA^6+5*tanA^8)/(-1+45*tanA^2-210*tanA^4+210*tanA^6-45*tanA^8+tanA^10)
N倍角公式
  根据棣美弗定理,(cosθ+ i sinθ)^n = cos(nθ)+ i sin(nθ) 为方便描述,令sinθ=s,cosθ=c 考虑n为正整数的情形: cos(nθ)+ i sin(nθ) = (c+ i s)^n = C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... +C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... =>比较两边的实部与虚部 实部:cos(nθ)=C(n,0)*c^n + C(n,2)*c^(n-2)*(i s)^2 + C(n,4)*c^(n-4)*(i s)^4 + ... i*(虚部):i*sin(nθ)=C(n,1)*c^(n-1)*(i s)^1 + C(n,3)*c^(n-3)*(i s)^3 + C(n,5)*c^(n-5)*(i s)^5 + ... 对所有的自然数n, 1. cos(nθ): 公式中出现的s都是偶次方,而s^2=1-c^2(平方关系),因此全部都可以改成以c(也就是cosθ)表示。 2. sin(nθ): (1)当n是奇数时: 公式中出现的c都是偶次方,而c^2=1-s^2(平方关系),因此全部都可以改成以s(也就是sinθ)表示。 (2)当n是偶数时: 公式中出现的c都是奇次方,而c^2=1-s^2(平方关系),因此即使再怎么换成s,都至少会剩c(也就是 cosθ)的一次方无法消掉。 (例. c^3=c*c^2=c*(1-s^2),c^5=c*(c^2)^2=c*(1-s^2)^2)
半角公式
  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
  sin^2(a/2)=(1-cos(a))/2
  cos^2(a/2)=(1+cos(a))/2
  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
和差化积
  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]
   sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]
  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]
  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]
  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
两角和公式
  tan(α+β)=(tanα+tanβ)/(1-tanαtanβ)
  tan(α-β)=(tanα-tanβ)/(1+tanαtanβ)
  cos(α+β)=cosαcosβ-sinαsinβ
  cos(α-β)=cosαcosβ+sinαsinβ
  sin(α+β)=sinαcosβ+cosαsinβ
  sin(α-β)=sinαcosβ -cosαsinβ
积化和差
  sinαsinβ =-[cos(α+β)-cos(α-β)] /2
  cosαcosβ = [cos(α+β)+cos(α-β)]/2
  sinαcosβ = [sin(α+β)+sin(α-β)]/2
  cosαsinβ = [sin(α+β)-sin(α-β)]/2
双曲函数
  sh a = [e^a-e^(-a)]/2
  ch a = [e^a+e^(-a)]/2
  th a = sin h(a)/cos h(a)
  公式一:
  设α为任意角,终边相同的角的同一三角函数的值相等:
  sin(2kπ+α)= sinα
  cos(2kπ+α)= cosα
  tan(2kπ+α)= tanα
  cot(2kπ+α)= cotα
  公式二:
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
  sin(π+α)= -sinα
  cos(π+α)= -cosα
  tan(π+α)= tanα
  cot(π+α)= cotα
  公式三:
  任意角α与 -α的三角函数值之间的关系:
  sin(-α)= -sinα
  cos(-α)= cosα
  tan(-α)= -tanα
  cot(-α)= -cotα
  公式四:
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  sin(π-α)= sinα
  cos(π-α)= -cosα
  tan(π-α)= -tanα
  cot(π-α)= -cotα
  公式五:
  利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
  sin(2π-α)= -sinα
  cos(2π-α)= cosα
  tan(2π-α)= -tanα
  cot(2π-α)= -cotα
  公式六:
  π/2±α及3π/2±α与α的三角函数值之间的关系:
  sin(π/2+α)= cosα
  cos(π/2+α)= -sinα
  tan(π/2+α)= -cotα
  cot(π/2+α)= -tanα
  sin(π/2-α)= cosα
  cos(π/2-α)= sinα
  tan(π/2-α)= cotα
  cot(π/2-α)= tanα
  sin(3π/2+α)= -cosα
  cos(3π/2+α)= sinα
  tan(3π/2+α)= -cotα
  cot(3π/2+α)= -tanα
  sin(3π/2-α)= -cosα
  cos(3π/2-α)= -sinα
  tan(3π/2-α)= cotα
  cot(3π/2-α)= tanα
  (以上k∈Z)
  A·sin(ωt+θ)+ B·sin(ωt+φ) =
  √{(A2 +B2 +2ABcos(θ-φ)} · sin{ ωt + arcsin[ (A·sinθ+B·sinφ) / √{A^2 +B^2; +2ABcos(θ-φ)} }
  √表示根号,包括{……}中的内容
三角函数的诱导公式(六公式)
  公式一 sin(-α) = -sinα
  cos(-α) = cosα
  tan (-α)=-tanα
  公式二sin(π/2-α) = cosα
  cos(π/2-α) = sinα
  公式三 sin(π/2+α) = cosα
  cos(π/2+α) = -sinα
  公式四sin(π-α) = sinα
  cos(π-α) = -cosα
  公式五sin(π+α) = -sinα
  cos(π+α) = -cosα
  公式六tanA= sinA/cosA
  tan(π/2+α)=-cotα
  tan(π/2-α)=cotα
  tan(π-α)=-tanα
  tan(π+α)=tanα
  诱导公式记背诀窍:奇变偶不变,符号看象限
万能公式
  sinα=2tan(α/2)/[1+(tan(α/2))2]
  cosα=[1-(tan(α/2))2]/[1+(tan(α/2))2]
  tanα=2tan(α/2)/[1-(tan(α/2))2]
  
其它公式
   (1) (sinα)^2+(cosα)^2=1(平方和公式)
  (2)1+(tanα)^2=(secα)^2
  (3)1+(cotα)^2=(cscα)^2
1.
sin(-a)=-sin(a)
cos(-a)=cos(a)
sin(π2-a)=cos(a)
cos(π2-a)=sin(a)
sin(π2+a)=cos(a)
cos(π2+a)=-sin(a)
sin(π-a)=sin(a)
cos(π-a)=-cos(a)
sin(π+a)=-sin(a)
cos(π+a)=-cos(a)
2.两角和与差的
sin(a+b)=sin(a)cos(b)+cos(α)sin(b)
cos(a+b)=cos(a)cos(b)-sin(a)sin(b)
sin(a-b)=sin(a)cos(b)-cos(a)sin(b)
cos(a-b)=cos(a)cos(b)+sin(a)sin(b)
tan(a+b)=tan(a)+tan(b)1-tan(a)tan(b)
tan(a-b)=tan(a)-tan(b)1+tan(a)tan(b)
3.
公式
sin(a)+sin(b)=2sin(a+b2)cos(a-b2)
sin(a)?sin(b)=2cos(a+b2)sin(a-b2)
cos(a)+cos(b)=2cos(a+b2)cos(a-b2)
cos(a)-cos(b)=-2sin(a+b2)sin(a-b2)
4.
sin(2a)=2sin(a)cos(b)
cos(2a)=cos2(a)-sin2(a)=2cos2(a)-1=1-2sin2(a)
5.
sin2(a2)=1-cos(a)2
cos2(a2)=1+cos(a)2
tan(a2)=1-cos(a)sin(a)=sina1+cos(a)
6.
sin(a)=2tan(a2)1+tan2(a2)
cos(a)=1-tan2(a2)1+tan2(a2)
tan(a)=2tan(a2)1-tan2(a2)
7.其它公式(推导出来的 )
a?sin(a)+b?cos(a)=a2+b2sin(a+c) 其中 tan(c)=ba
a?sin(a)+b?cos(a)=a2+b2cos(a-c) 其中 tan(c)=ab
1+sin(a)=(sin(a2)+cos(a2))2
1-sin(a)=(sin(a2)-cos(a2))2
望采纳
公式见下面:三角函数的必背公式包括半角公式,倍角公式,两角和与差公式,积化和差公式,和差化积公式。sin(A/2)=±√((1-cosA)/2),cos(A/2)=±√((1+cosA)/2),tan(A/2)=±√((1-cosA)/((1+cosA))。三角函数是数学中属于初等函数中的超越函数的函数。通常是在平面直角坐标系中定义的,其定义域为整个实数域。

网站数据信息

"三角函数12个基本公式,三角函数公式是什么?"浏览人数已经达到17次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:三角函数12个基本公式,三角函数公式是什么?的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!