百度
360搜索
搜狗搜索

反函数求导公式大全,常见的反导公式详细介绍

本文目录一览: 常见的反导公式

公式:∫x^9dx/(1+x^20)。
1、反正弦函数的求导:(arcsinx)'=1/√(1-x^2)。
2、反余弦函数的求导:(arccosx)'=-1/√(1-x^2)。
3、反正切函数的求导:(arctanx)'=1/(1+x^2)。
4、反余切函数的求导:(arccotx)'=-1/(1+x^2)。
一般来说
设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作x=f-1(y) 。反函数x=f-1(y)的定义域、值域分别是函数y=f(x)的值域、定义域。最具有代表性的反函数就是对数函数与指数函数。

反函数导数怎么求?

y=arcsinx y'=1/√(1-x^2)
反函数的导数:
y=arcsinx,
那么,siny=x,
求导得到,cosy *y'=1
即 y'=1/cosy=1/√[1-(siny)^2]=1/√(1-x^2)
扩展资料:
引用的常用公式
在推导的过程中有这几个常见的公式需要用到:
⒈(链式法则)y=f[g(x)],y'=f'[g(x)]·g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2. y=u*v,y'=u'v+uv'(一般的leibniz公式)
3.y=u/v,y'=(u'v-uv')/v^2,事实上4.可由3.直接推得
4.(反函数求导法则)y=f(x)的反函数是x=g(y),则有y'=1/x'
参考资料:导数表-百度百科

反函数求导公式

反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。
首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。
扩展资料:
设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x)。
反函数y=f^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。
若一函数有反函数,此函数便称为可逆的。

反三角函数求导公式是什么?

1、反正弦函数的求导:(arcsinx)'=1/√(1-x^2)
2、反余弦函数的求导:(arccosx)'=-1/√(1-x^2)
3、反正切函数的求导:(arctanx)'=1/(1+x^2)
4、反余切函数的求导:(arccotx)'=-1/(1+x^2)
三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
扩展资料
反三角函数遵循的规则:
1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;
2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是尖端的);
3、为了使研究方便,常要求所选择的区间包含0到π/2的角;
4、所确定的区间上的函数值域应与整函数的定义域相同。
参考资料来源:百度百科-反三角函数
公式:
(arcsinx)'=1/√(1-x^2)
(arccosx)'=-1/√(1-x^2)
(arctanx)'=1/(1+x^2)
(arccotx)'=-1/(1+x^2)
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。
扩展资料:
为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x;相应地,反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2
<y<π 2;反余切函数y="arccot" x的主值限在0<y<π。
正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。

正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。

余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。

参考资料来源:百度百科——反三角函数

反三角函数的求导公式:

反正弦的求导:(arcsinx)'=1/√(1-x^2)

反余弦的求导:(arccosx)'=-1/√(1-x^2)

反正切的求导:(arctanx)'=1/(1+x^2)

反余切的求导:(arccotx)'=-1/(1+x^2)

反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切 ,反正割,反余割为x的角。

扩展资料:

商的导数公式:

(u/v)'=[u*v^(-1)]'

=u' * [v^(-1)] +[v^(-1)]' * u

= u' * [v^(-1)] + (-1)v^(-2)*v' * u

=u'/v - u*v'/(v^2)

通分,易得:

(u/v)=(u'v-uv')/v2

常用导数公式:

1.y=c(c为常数) y'=0

2.y=x^n y'=nx^(n-1)

3.y=a^x y'=a^xlna,y=e^x y'=e^x

4.y=logax y'=logae/x,y=lnx y'=1/x

5.y=sinx y'=cosx

6.y=cosx y'=-sinx

7.y=tanx y'=1/cos^2x

8.y=cotx y'=-1/sin^2x

反三角函数值怎么算

全部反三角函数的导数如下图所示:

反三角函数(inverse trigonometric function)是一类初等函数。指三角函数的反函数,由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数。

扩展资料:

由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:

1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合。

2、两个函数的乘积的导函数:一导乘二+一乘二导。

3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方。

4、如果有复合函数,则用链式法则求导。

1、反正弦函数的求导:(arcsinx)'=1/√(1-x^2)

2、反余弦函数的求导:(arccosx)'=-1/√(1-x^2)

3、反正切函数的求导:(arctanx)'=1/(1+x^2)

4、反余切函数的求导:(arccotx)'=-1/(1+x^2)

为限制反三角函数为单值函数,将反正弦函数的值y限在-π/2≤y≤π/2,将y作为反正弦函数的主值,记为y=arcsin x。

相应地。反余弦函数y=arccos x的主值限在0≤y≤π;反正切函数y=arctan x的主值限在-π/2
<y<π 2;反余切函数y="arccot" x的主值限在0<y<π。
1、反正弦函数

正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

2、反余弦函数

余弦函数y=cos x在[0,π]上的反函数,叫做反余弦函数。记作arccosx,表示一个余弦值为x的角,该角的范围在[0,π]区间内。定义域[-1,1] , 值域[0,π]。

3、反正切函数

正切函数y=tan x在(-π/2,π/2)上的反函数,叫做反正切函数。记作arctanx,表示一个正切值为x的角,该角的范围在(-π/2,π/2)区间内。定义域R,值域(-π/2,π/2)。

5、反余切函数

余切函数y=cot x在(0,π)上的反函数,叫做反余切函数。记作arccotx,表示一个余切值为x的角,该角的范围在(0,π)区间内。定义域R,值域(0,π)。

6、反正割函数

正割函数y=sec x在[0,π/2)U(π/2,π]上的反函数,叫做反正割函数。记作arcsecx,表示一个正割值为x的角,该角的范围在[0,π/2)U(π/2,π]区间内。

定义域(-∞,-1]U[1,+∞),值域[0,π/2)U(π/2,π]。

7、反余割函数

余割函数y=csc x在[-π/2,0)U(0,π/2]上的反函数,叫做反余割函数。记作arccscx,表示一个余割值为x的角,该角的范围在[-π/2,0)U(0,π/2]区间内。定义域(-∞,-1]U[1,+∞),值域[-π/2,0)U(0,π/2]。

扩展资料:

反三角函数的公式:

反三角函数的和差公式与对应的三角函数的和差公式没有关系:

y=arcsin(x),定义域[-1,1],值域[-π/2,π/2];

y=arccos(x),定义域[-1,1],值域[0,π];

y=arctan(x),定义域(-∞,+∞),值域(-π/2,π/2);

y=arccot(x),定义域(-∞,+∞),值域(0,π);

sin(arcsinx)=x,定义域[-1,1],值域[-1,1]arcsin(-x)=-arcsinx;

证明方法如下:设arcsin(x)=y,则sin(y)=x,将这两个式子代入上式即可得。

其他几个用类似方法可得。

cos(arccosx)=x,arccos(-x)=π-arccosx。

tan(arctanx)=x,arctan(-x)=-arctanx。

反三角函数其他公式:

cos(arcsinx)=√(1-x^2)。

arcsin(-x)=-arcsinx。

arccos(-x)=π-arccosx。

arctan(-x)=-arctanx。

arccot(-x)=π-arccotx。

arcsinx+arccosx=π/2=arctanx+arccotx。

sin(arcsinx)=cos(arccosx)=tan(arctanx)=cot(arccotx)=x。

当x∈[-π/2,π/2]有arcsin(sinx)=x。

x∈[0,π],arccos(cosx)=x。

x∈(-π/2,π/2),arctan(tanx)=x。

x∈(0,π),arccot(cotx)=x。

x>0,arctanx=π/2-arctan1/x,arccotx类似。

若(arctanx+arctany)∈(-π/2,π/2),则arctanx+arctany=arctan((x+y)/(1-xy))。

三角函数的诱导公式(四公式) 。

公式一: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 。

公式二: sin(π/2-α) = cosα cos(π/2-α) = sinα 。

公式三: sin(π/2+α) = cosα cos(π/2+α) = -sinα 。

公式四: sin(π-α) = sinα cos(π-α) = -cosα 。

参考资料来源:百度百科-反三角函数
</y
</y

三角函数反函数怎么求导?

这篇文章我给大家整理了反三角函数的的求导公式以及反三角函数的相关公式,供参考!

反三角函数求导公式 反正弦函数的求导:(arcsinx)'=1/√(1-x^2)
反余弦函数的求导:(arccosx)'=-1/√(1-x^2)
反正切函数的求导:(arctanx)'=1/(1+x^2)
反余切函数的求导:(arccotx)'=-1/(1+x^2)
反三角函数负数关系公式 arcsin(-x)=-arcsin(x)
arccos(-x)=π-arccos(x)
arctan(-x)=-arctan(x)
arccot(-x)=π-arccot(x)
反三角函数倒数关系公式 arcsin(1/x)=arccsc(x)
arccos(1/x)=arcsec(x)
arctan(1/x)=arccot(x)=π/2-arctan(x)(x>0)
arccot(1/x)=arccot(x)=π/2-arccot(x)(x>0)
arccot(1/x)=arctan(x)+π=3π/2-arccot(x)(x<0)
反三角函数余角关系公式 arcsin(x)+arccos(x)=π/2
arctan(x)+arccot(x)=π/2
arcsec(x)+arccsc(x)=π/2

阅读更多 >>>  jqueryon方法,jqueryfnon

反函数的导数公式

反函数的导数公式:dg/dy=dx/dy,反函数的求导法则是反函数的导数是原函数导数的倒数。反函数是相互的且具有唯一性;一个函数与它的反函数在相应区间上单调性一致。
大部分偶函数不存在反函数(当函数y=f(x),定义域是{0}且f(x)=C(其中C是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0})。奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数。若一个奇函数存在反函数,则它的反函数也是奇函数。

反函数的导数是什么?

反函数的导数是其原函数导数的倒数。设原函数为 y = f(x),其反函数为 x = g(y),则有 f'(x) = 1/g'(y)。这是因为,反函数与原函数的导数之间满足一个简单的关系:df/dx = 1/dg/dy。因此,如果已知原函数的导数,可以通过求反函数的导数的倒数来得到反函数的导数。
反函数的导数具有特定的性质。如果函数 f 的反函数存在且可导,那么反函数的导数可以表示为:
(f^(-1'(x) = 1 / f'(f(-1)(x))
,f^(-1)表示函数 的反函数。这个公式表明,反函数的导数是原函数在反函数的值处导数的倒数。注意,这个公式的适用条件是反函数存在且可导。
若函数f(x)在某个区间上具有反函数g(x),则反函数的导数可以通过以下关系得到:
若 f'(x) ≠ 0,且 f(g(x)) = x,那么 g'(x) = 1 / f'(g(x))
这意味着,如果f(x)在某个点上的导数不为零,并且反函数g(x)是存在的,那么g(x)在该点也具有导数,并且等于1除以f'(g(x))。
这个关系可以通过链式法则来证明,在这个过程中使用了反函数的性质。具体推导过程如下:
设f(g(x)) = x,对两边求导数:
f'(g(x)) * g'(x) = 1
将方程两边关于g'(x)求解:
g'(x) = 1 / f'(g(x))
需要注意的是,这个关系式只在满足上述条件的情况下成立。当f'(x)在某点为零时,根据上述关系,反函数的导数无法被定义。
反函数的求导法则是:反函数的导数是原函数导数的倒数。
例题:求= arcsinx的导函数。首先, 函数y= arcsinx的反函数为x=siny ,所以: y '=1/sin' y= 1/cosy因为x=siny ,所以cosy=V1-x2;所以y '=1/v1-x2。
原函数的导数等于反函数导数的倒数设y=f (x)。其反函数为x=g (v)可以得到微分关系式: dy= (df/ dx) dx, dx= (dg/ dy) dy。
那么,由导数和微分的关系我们得到:
原函数的导数是df/ dx=dy/ dx。
反函数的导数是dg/ dy=dx/ dy。
所以,可以得到df/ dx=1/ (dg/ dx)。
1、反函数的定义域是原函数的值域,反函数的值域是原函数的定义域。
2、互为反函数的两个函数的图像关于直线y=x对称。
3、原函数若是奇函数,则其反函数为奇函数。
4、若函数是单调函数,则-定有反函数,且反函数的单调性与原函数的一致。
5、原函数与反函数的图像若有交点,则交点-定在直线y=x上或关于直线y=x对称出现。

反函数求导法则

反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。
首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。
扩展资料:
设函数y=f(x)(x∈A)的值域是C,若找得到一个函数g(y)在每一处g(y)都等于x,这样的函数x=g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1)(x)。
反函数y=f^(-1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域。
若一函数有反函数,此函数便称为可逆的。
反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数。 首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy因为x=siny,所以cosy=√1-x2所以y‘=1/√1-x2。同理可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。
扩展资料:一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。
求导是数学计算中的一个计算方法, 导数定义为:当自变量的增量趋于零时,因变量的增量与自变量的增量之商的 极限。在一个函数存在导数时,称这个函数 可导或者可 微分。可导的函数一定连续。不连续的函数一定不可导。
物理学、几何学、经济学等学科中的一些重要概念都可以用导数来表示。如,导数可以表示运动物体的 瞬时速度和加速度、可以表示曲线在一点的 斜率、还可以表示经济学中的边际和弹性。
数学中的名词,即对函数进行求导,用f'(x)表示。
反函数的求导法则是:反函数的导数是原函数导数的倒数。
例题:求y=arcsinx的导函数。 首先,函数y=arcsinx的反函数为x=siny,所以: y‘=1/sin’y=1/cosy
因为x=siny,所以cosy=√1-x2;
所以y‘=1/√1-x2。
同理可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。
你的理解有点问题,“反函数的导数等于直接函数导数的倒数”的意思是:
令x=g(y)是y=f(x)的反函数,则:g'(y)=1/f'(x)
就拿你的例子来说明
y=x^2(不妨设x≥0)的反函数是:
x=√y
为了表述上的习惯性,我们一般说
他的反函数是:
y=√x
但是在求导数的时候就不能这样了
应该是这样:
f(x)=x^2的反函数为:x=g(y)=√y,
所以有:g'(y)=1/f'(x)
即:
(√y)'=1/(x^2)'
分别计算 1/(x^2)'和(√y)':
1/(x^2)'=1/(2x)
(√y)'=1/(2√y)=1/[2√(x^2)]=1/(2x)
所以:(√y)'=1/(x^2)'
也就是反函数的导数等于直接函数导数的倒数
不知道你看明白没……?
如果还有不懂的,再补充提问吧……
考虑需要求导的函数y=x^(1/2).它存在反函数x=y^2。[x^(1/2)]'=1/(y^2)'=1/(2y)=1/[2x^(1/2)]=(1/2)x^(-1/2)。用反函数求导时,注意不能按习惯把要用的反函数x=y^2写成y=x^2!
反函数的求导法则是:反函数的导数是原函数导数的倒数。例题:求y=arcsinx的导函数。 首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy
因为x=siny,所以cosy=√1-x2
所以y‘=1/√1-x2。
同理可以求其他几个反三角函数的导数。所以以后在求涉及到反函数的导数时,先将反函数求出来,只是这里的反函数是以x为因变量,y为自变量,这个要和我们平时的区分开。最后将y想法设法换成x即可。
扩展资料:
一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x= g(y). 若对于y在C反函数中的任何一个值,通过x= g(y),x在A中都有唯一的值和它对应,那么,x= g(y)就表示y是自变量,x是因变量是y的函数,这样的函数x= g(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f^(-1) (x) 反函数y=f^(-1) (x)的定义域、值域分别是函数y=f(x)的值域、定义域。

反导数公式

反函数的导数是原函数导数的倒数。求y=arcsinx的导函数,反函数的导数就是原函数导数的倒数。首先,函数y=arcsinx的反函数为x=siny,所以:y‘=1/sin’y=1/cosy,因为x=siny,所以cosy=√1-x2,所以y‘=1/√1-x2。
导数(Derivative),也叫导函数值。又名微商,是微积分中的重要基础概念。当函数y=f(x)的自变量x在一点x0上产生一个增量Δx时,函数输出值的增量Δy与自变量增量Δx的比值在Δx趋于0时的极限a如果存在,a即为在x0处的导数,记作f'(x0)或df(x0)/dx。

网站数据信息

"反函数求导公式大全,常见的反导公式"浏览人数已经达到17次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:反函数求导公式大全,常见的反导公式的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!