百度
360搜索
搜狗搜索

gamma分布函数,Gamma分布的矩母函数怎么求呢?详细介绍

本文目录一览: gamma分布是什么?

gamma分布是统计学中的连续概率函数。
伽玛分布是统计学的一种连续概率函数。Gamma分布中的参数α,形状参数(shape parameter),β称为尺度参数(scale parameter)。
意义:假设随机变量X为等到第α件。
卡方(n)~gamma(n/2,1/2)指数分布exp(k)~gamma(1,k)。
伽玛分布是统计学中的一种连续概率函数,包含两个参数α和β,其中α称为形状参数,β称为尺度参数。
伽马分布的特性:
Gamma的可加性。
两个独立随机变量X和Y,且X~Ga(a,γ),Y~Ga(b,γ),则Z = X+Y ~ Ga(a+b,γ)。注意X和Y的尺度参数必须一样。
数学表达式。
若随机变量X具有概率密度。
其中α>0,β>0,则称随机变量X服从参数α,β的伽马分布,记作G(α,β)。

伽马分布的特征函数

伽马分布 Ga(n, λ) 的特征函数: 假设 Y ~ Ga(n, λ) ,则 Y = X1 + X2 + X3 + ? + Xn 其中 Xi 独立同分布,且 Xi ~ Ga(1, λ),则 Xi 的特征函数为?φXi(t) = (1 ? it λ) ? 1。
伽玛分布(Gamma Distribution)是统计学的一种连续概率函数,是概率统计中一种非常重要的分布。“指数分布”和“χ2分布”都是伽马分布的特例。?
Gamma分布中的参数α称为形状参数(shape parameter),β称为逆尺度参数。
两个独立随机变量X和Y,且X~Ga(a,γ),Y~Ga(b,γ),则Z = X+Y ~ Ga(a+b,γ)。注意X和Y的尺度参数必须一样。
当形状参数α=1时,伽马分布就是参数为γ的指数分布,X~Exp(γ)
当α=n/2,β=1/2时,伽马分布就是自由度为n的卡方分布,X^2(n)

gamma分布是什么?

Gamma分布:是指在地震序列的有序性、地震发生率的齐次性、计数特征具有独立增量和平稳增量情况下,可以导出地震发生i次时间的概率密度为Gamma密度函数。
α=n,Γ(n,β)就是Erlang分布。Erlang分布常用于可靠性理论和排队论中,如一个复杂系统中从第1次故障到恰好再出现n次故障所需的时间;从某一艘船到达港口直到恰好有n只船到达所需的时间都服从Erlang分布。
当α= 1 , β = 1/λ 时,Γ(1,λ) 就是参数为λ的指数分布,记为exp (λ) ;当α =n/2 ,β=2时,Γ (n/2,2)就是数理统计中常用的χ2( n) 分布。
数学表达式:若随机变量X具有概率密度,其中α>0,β>0,则称随机变量X服从参数α,β的伽马分布,记作G(α,β)。
Gamma分布的特殊形式:当形状参数α=1时,伽马分布就是参数为γ的指数分布,X~Exp(γ)。
当α=n/2,β=1/2时,伽马分布就是自由度为n的卡方分布,X^2(n)。

gamma分布是怎么样的?

gamma分布如下:
所谓的伽玛分布是统计学的一种连续概率函数(具体形状可参考图)。
Gamma分布中的参数α称为形状参数,β称为尺度参数。当两随机变量服从Gamma分布,且单位时间内频率相同时,其中α>0,β>0,则称随机变量X服从参数α,β的伽马分布,记作G(α,β)。
gamma分布的性质:
α=n,Γ(n,β)就是Erlang分布。Erlang分布常用于可靠性理论和排队论中 ,如一个复杂系统中从第 1 次故障到恰好再出现 n 次故障所需的时间;从某一艘船到达港口直到恰好有 n 只船到达所需的时间都服从 Erlang分布。
当α= 1 , β = 1/λ 时,Γ(1,λ) 就是参数为λ的指数分布,记为exp (λ)。

伽玛(Gamma)函数怎么求?

Γ(2)伽玛函数公式:Γ(x)=积分:e^(-t)*t^(x-1)dt。
利用伽马函数γ(n)=(n-1)γ(n-1)=(n-1)!及γ(1/2)=√π,有γ(1/2+n)=γ[(n-1+1/2)+1]=[(2n-1)/2]γ(n-1/2)。
=[(2n-1)/2]][(2n-3)/2](1/2)γ(1/2)。
=[(2n-1)(2n-3)^(1)/2^n]γ(1/2)。
=[√π/2^n](2n-1)!!。“(2n-1)!!”表示自然数中连续奇数的连乘积。
Stirling公式
Gamma函数从它诞生开始就被许多数学家进行研究,包括高斯、勒让德、魏尔斯特拉斯、刘维尔等等。这个函数在现代数学分析中被深入研究,在概率论中也是无处不在,很多统计分布都和这个函数相关。
Gamma函数作为阶乘的推广,首先它也有和Stirling公式类似的一个结论:即当x取的数越大,Gamma函数就越趋向于Stirling公式,所以当x足够大时,可以用Stirling公式来计算Gamma函数值。

伽马分布期望推导公式

伽马分布期望推导公式:D(X)=E(X^2)-(E(X))^2。
取决于所选择的概率密度函数的形式。通常情况下,具有两种形式,这两种形式的概率密度函数有一点小差别(即参数的选择上,形状参数相同,而第二个参数互为倒数关系)。伽马分布的期望要看使用的函数表达式 一般的表达式中期望等于α*β,方差等于α*(β^2)。
伽玛函数(Gamma函数)
也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。

伽马函数的计算问题

分享一种解法。设x(1+z)/5=t。∴x=5t/(1+z)。∴“□式”=[z/(1+z)3]∫(0,∞)t2e^(-t)dt。
又,伽玛函数Γ(α)=∫(0,∞)[t^(α-1)]e^(-t)dt(α>0),当α为自然数时,Γ(α)=(α-1)!。故,∫(0,∞)t2e^(-t)dt=Γ(3)=(3-1)!=2。
∴结果是2z/(1+z)3。
供参考。
a = (1+z)/5
x^2 * exp(-ax)dx
=(1/a)^2 * (ax)^2 * exp(-ax)d[(ax)*1/a]
=(1/a)^3 * (ax)^2 * exp(-ax)d(ax)
变换后积分上下限还是0到正无穷
所以(1/a)^3 * gamma(3)
伽玛函数(Gamma函数),也叫欧拉第二积分,是阶乘函数在实数与复数上扩展的一类函数。该函数在分析学、概率论、偏微分方程和组合数学中有重要的应用。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分。可以用来快速计算同伽马函数形式相类似的积分。
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成

(1)在实数域上伽玛函数定义为:
(2)在复数域上伽玛函数定义为:
其中
,此定义可以用解析开拓原理拓展到整个复数域上,非正整数除外。
复平面上的Gamma 函数
(3)除了以上定义之外,伽马函数公式还有另外一个写法:
我们都知道
是一个常用积分结果,公式(3)可以用
来验证。
(4)伽马函数还可以定义为无穷乘积:
不完全Gamma函数
详见不完全伽马函数
1728年,哥德巴赫在考虑数列插值的问题,通俗的说就是把数列的通项公式定义从整数集合延拓到实数集合,例如数列1,4,9,16.....可以用通项公式n2自然的表达,即便 n 为实数的时候,这个通项公式也是良好定义的。直观的说也就是可以找到一条平滑的曲线y=x2通过所有的整数点(n,n2),从而可以把定义在整数集上的公式延拓到实数集合。一天哥德巴赫开始处理阶乘序列1,2,6,24,120,720,...,我们可以计算2!,3!,是否可以计算2.5!呢?我们把最初的一些(n,n!)的点画在坐标轴上,确实可以看到,容易画出一条通过这些点的平滑曲线。
但是哥德巴赫无法解决阶乘往实数集上延拓的这个问题,于是写信请教尼古拉斯·伯努利和他的弟弟丹尼尔·伯努利,由于欧拉当时和丹尼尔·伯努利在一块,他也因此得知了这个问题。而欧拉于1729 年完美地解决了这个问题,由此导致了伽玛 函数的诞生,当时欧拉只有22岁。
函数性质
编辑
1、通过分部积分的方法,可以推导出这个函数有如下的递归性质:
于是很容易证明,伽马函数可以当成是阶乘在实数集上的延拓,对于正整数n,具有如下性质:
2、与贝塔函数的关系:
3、在概率的研究中有一个重要的分布叫做伽玛分布:
其中

4、对
,有
这个公式称为余元公式。
由此可以推出以下重要的概率公式:
5、对于
,伽马函数是严格凹函数。
6、伽马函数是亚纯函数,在复平面上,除了零和负整数点以外,它全部解析,而伽马函数在
处的留数为
希望我能帮助你解疑释惑。

伽马函数怎么求

Γ(x)=∫e^(-t)t^(x-1)dt
伽玛函数(Gamma Function)作为阶乘的延拓,是定义在复数范围内的亚纯函数,通常写成Γ(x)。与之有密切联系的函数是贝塔函数,也叫第一类欧拉积分,可以用来快速计算同伽马函数形式相类似的积分。我们使用了伽马函数,定义出了很多概率的分布,如Beta分布,卡方分布,狄利克雷分布和学生t分布等等。对于研究人员来说,伽马函数是是他们用的最普遍使用的功能。对于数据科学家而言,是生成统计模型和研究排队模型最好的方法。因此,伽马函数学好了还是挺关键的。
Γ(x)伽马函数公式的过程是当z为自然数的时候,Γ(z+1) = z,而且我们从这个公式可以看出它是一直在递增的,因此,我们可以让它和阶乘建立起联系,自然对数e表示的非常好,我们用洛必达法则,就可以说明它是收敛的,因为e^-x的值是要比x^z的值下降得很快。伽马函数已经有300多年的历史了,而且是在欧拉64岁失明后创作的,是值得我们信任的人。
希望我的回答能帮到你。

Gamma分布的矩母函数怎么求呢?

Y~gamma(r,lamda)
Y=x1+x2+...+xr
each xi follows exponentional distribution(lamda)
My(t)=Mx1*Mx2*....Mxr
Y~gamma(r,lamda)
Y=x1+x2+...+xr
each xi follows exponentional distribution(lamda)
My(t)=Mx1*Mx2*....Mxr

解:
泊松分布为离散分布,密度函数f(k)=(λ^k)/(k!)e^(-λ)(k=0,1,2,…,∞)。
矩母函数Mx(t)=E[e^(tx)]=∑e^(tk)f(k)=∑e^(tk))(λ^k)/(k!)e^(-λ)=e^(-λ)∑[(λe^t)^k)]/(k!)=e^[λ(e^t-1)]。
指数分布是连续分布,密度函数f(x)=λe^(-λx),x∈(0,∞)。
性质:
对比特征函数的性质,随机变量的mgf也具有如下常用性质:
(1)如果两个随机变量具有相同的mgf,那么它们具有相同的概率分布; 反之, 如果两个随机变量具有相同的概率分布, 它们的mgf也相同。(即在mgf存在的情况下,随机变量的mgf与其概率分布相互唯一确定。)
(2)独立随机变量和的mgf等于每个随机变量mgf的乘积。

如何用matlab画带有Gamma分布的函数

用MATLAB中自带的gamrnd函数即可,其具体意思如下:
gamrnd是用来产生服从伽马分布的随机数函数,有以下几种形式:
1.R = gamrnd(A,B)
2.R = gamrnd(A,B,v)
3.R = gamrnd(A,B,m,n)
描述:
1.R = gamrnd(A,B)产生服从伽马分布参数为A,B的随机数。A,B可以是向量、矩阵或多维数组,但它们的维数必须相同
2.R = gamrnd(A,B,v)产生服从伽马分布参数为A,B的随机数,v是一个行向量。若v是一个1*2的向量,R就是有v(1)行v(2)列的矩阵,若v是1*n,那么R就是一个n维数组。
3.R = gamrnd(A,B,m,n)产生服从伽马分布参数为A,B的随机数,m和n是R的行和列维数的范围。
采纳吧,写了这么多。

阅读更多 >>>  买电视需要看哪些参数

网站数据信息

"gamma分布函数,Gamma分布的矩母函数怎么求呢?"浏览人数已经达到22次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:gamma分布函数,Gamma分布的矩母函数怎么求呢?的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!