数学三角函数表,初中数学常用三角函数公式表
数学三角函数表,初中数学常用三角函数公式表详细介绍
本文目录一览: 常见三角函数值表是什么?
常见三角函数值指的是常见角度数的三角函数值,表格如下:
扩展资料:
三角函数表发展到今天,经历了许多变迁。
最初,三角函数的概念是探索天文现象发现的,三角函数的周期性变化可以在一定程度上从数学的角度,解释天文现象的周期性变化。
三角函数表的最早形态,可以追溯到古希腊天文学家托勒密的著作《天文学大成》中记录的“弦表”。
托勒密在制作这张弦表时使用的是半径为60单位的圆的圆心角,并且记录了弦长,因此,正弦函数值的变化也是在圆半径不变的基础上,随着弦长的变化而变化。也就是说,这张弦表也可以视为最早的正弦表。
至此,三角函数值多为弦值,直到中亚细亚天文学家阿尔·巴坦尼通过将一根杆直立在地上/墙上通过阴影测量太阳仰角的时候,得出了余切值与正切值。杆立在地上时,阳光在地上投射的影子长度即余切值;杆水平插在墙上时,阳光投射杆在墙面上的影子长度即正切值。
后来,14世纪英国三角学者布拉瓦丁正式将切值引入到了三角计算中去。直到天文学家哥白尼的学生利提克斯认为当时天文观测的精度需要越来越高,对精确三角函数值的计算也越来越迫切,便开始着手于包括正弦、正切和正割的三角函数表的制作。直到1956年由他的学生完成并公诸于世。
现在,随着计算机的出现,三角函数值的计算也愈加精密、愈加方便,三角函数表便慢慢消失在我们的视野中了。
参考资料来源:百度百科 - 三角函数对数表
下面是常见三角函数(正弦、余弦和正切)的值表:
三角函数常见数值表
这是一个基本的三角函数值表,列出了一些常见角度对应的正弦、余弦和正切值。注意,三角函数的输入通常采用弧度制,而不是度数制。上表中的角度以度数和对应的弧度表示。
需要注意的是,在某些特殊情况下,例如90度、270度等,正切函数的值不被定义。这是因为正切函数在这些角度上的值会趋向于无穷大。
常见的三角函数值表是什么呢?三角函数是数学中非常重要的一个部分,而三角函数值表则是三角函数的重要工具之一。下面,我们就来看看常见的三角函数值表:
1. 角度值表
角度值表是三角函数值表中最为常见的一种,它包括了三角函数各个角度的值。比如,对于锐角三角函数,角度值表中的值包括90度、45度、27.5度、20度、14.3度、11度、8度、6度、5度、4度、3度、2度、1度等。
2. 边长值表
边长值表是三角函数值表中第二常见的一种,它包括了三角函数各个边长的值。比如,对于正弦函数,边长值表中的值包括长度为1的直线上的两个点、长度为零的直线上的两个点、长度为无穷大的直线上的两个点等。
3. 角度和边长关系表
角度和边长关系表是三角函数值表中第三常见的一种,它包括了三角函数各个角度和边长的关系。比如,对于余弦函数,角度和边长关系表中的值包括角度为30度时的边长、角度为45度时的边长、角度为60度时的边长等。
总之,三角函数值表是三角函数的重要工具之一,它对于三角函数的计算和应用都有非常重要的意义。如果你对三角函数值表感兴趣,可以随时查阅相关资料和书籍。
常见三角函数值表是一个表格,列出了经典的三角函数(正弦、余弦和正切)在特定角度下的数值。以下是一个简化的三角函数值表:
角度(度) | 正弦值 | 余弦值 | 正切值
--------------------------------
0 | 0 | 1 | 0
30 | 1/2 | √3 / 2 | √3 / 3
45 | √2 / 2 | √2 / 2 | 1
60 | √3 / 2 | 1/2 | √3
90 | 1 | 0 | 无穷大
对于其他角度,可以通过计算或使用三角函数计算器来获得相应的数值。这个表格只列出了一些常见角度的数值,但实际上三角函数是连续的,可以在整个角度范围内使用。需要注意的是,角度通常用度数表示,但在一些情况下也可以使用弧度表示。
此外,三角函数还有反函数,即反正弦、反余弦和反正切,在特定数值下可以计算得到对应的角度。这些函数的计算通常需要使用计算器或数学软件。
常见三角函数值表是一张记录了常用角度的正弦、余弦、正切以及它们的倒数的数值表格。以下是一个常见的角度值表格(度数为角度制):
角度(度) 正弦值 余弦值 正切值
0° 0 1 0
30° 1/2 √3/2 1/√3
45° 1/√2 1/√2 1
60° √3/2 1/2 √3
90° 1 0 ∞
该表格显示了0°、30°、45°、60°和90°这几个常见角度的正弦、余弦和正切值。注意,90°的正切值为无穷大。倒数可以通过求倒数得到(倒数不显示在表格中)。对于其他角度,可以使用三角函数的特性或计算器来计算其数值。
三角函数表如下:
三角函数的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。
扩展资料:
sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0sin15=0.650;
sin15°=0.259
cos15=-0.759;cos15°=0.966
tan15=-0.855;tan15°=0.268
sin30°=1/2
cos30°=0.866;
tan30°=0.577;
sin45°=0.707;
cos45°=0.707
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=0.866
cos60=-0.952;cos60°=1/2
参考资料来源:百度百科-三角函数值
三角函数值表
三角函数值表:
数关系
tanα ·cotα=1
sinα ·cscα=1
cosα ·secα=1
商的关系
tanα=sinα/cosα cotα=cosα/sinα
正弦二倍角公式
sin2α = 2cosαsinα
推导:
sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
拓展公式:
sin2A=2sinAcosA=2tanAcos2A=2tanA/[1+tan2A]
余弦二倍角公式
余弦二倍角公式有三组表示形式,三组形式等价:
1.Cos2a=Cos2a-Sin2a=[1-tan2a]/[1+tan2a]
2.Cos2a=1-2Sin2a
3.Cos2a=2Cos2a-1
推导:
cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2A-sin^2A=2cos^2A-1=1-2sin^2A
正切二倍角公式
tan2α=2tanα/[1-tan2α]
推导:
tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan2A]
扩展资料以下关系,函数名不变,符号看象限.
sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sin(π-α)=sinα
cos(π-α)=-cosα
tan(π-α)=-tanα
cot(π-α)=-cotα
sin(2π-α)=-sinα
cos(2π-α)=cosα
tan(2π-α)=-tanα
cot(2π-α)=-cotα
以下关系,奇变偶不变,符号看象限
sin(90°-α)=cosα
cos(90°-α)=sinα
tan(90°-α)=cotα
cot(90°-α)=tanα
sin(90°+α)=cosα
cos(90°+α)=-sinα
tan(90°+α)=-cotα
cot(90°+α)=-tanα
sin(270°-α)=-cosα
cos(270°-α)=-sinα
tan(270°-α)=cotα
cot(270°-α)=tanα
sin(270°+α)=-cosα
cos(270°+α)=sinα
tan(270°+α)=-cotα
cot(270°+α)=-tanα
参考资料:百度百科-三角函数值
附:三角函数值表
sin0=0,
sin15=(√6-√2)/4 ,
sin30=1/2,
sin45=√2/2,
sin60=√3/2,
sin75=(√6+√2)/2 ,
sin90=1,
sin105=√2/2*(√3/2+1/2)
sin120=√3/2
sin135=√2/2
sin150=1/2
sin165=(√6-√2)/4
sin180=0
sin270=-1
sin360=0
sin1=0.01380028351 sin2=0.03489949670250097 sin3=0.05233595624294383
sin4=0.0697564737441253 sin5=0.08713800816 sin6=0.10452846326765346
sin7=0.12138004747 sin8=0.13800006544 sin9=0.13800023087
sin10=0.13800693033 sin11=0.1380065448 sin12=0.20791138001
sin13=0.22495105434386497 sin14=0.24138006773 sin15=0.25881380074
sin16=0.27563735581699916 sin17=0.2923713800 sin18=0.3090138004
sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027
sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015
sin25=0.42261380044 sin26=0.4383711467890774 sin27=0.45399049973954675
sin28=0.4694713800 sin29=0.48480962024633706 sin30=0.49999999999999994
sin31=0.5138000542 sin32=0.5299138009 sin33=0.544639035015027
sin34=0.5591380068 sin35=0.573576436351046 sin36=0.5877852522924731
sin37=0.6013800483 sin38=0.6138006583 sin39=0.6293203910498375
sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691380082
sin43=0.6813800985 sin44=0.6946583704589972 sin45=0.7071067811865475
sin46=0.7138006511 sin47=0.7313800705 sin48=0.7431380041
sin49=0.7547095802227719 sin50=0.766044443118978 sin51=0.7771380008
sin52=0.7880107536067219 sin53=0.7986355100472928 sin54=0.8090138004
sin55=0.8138009918 sin56=0.8290375725550417 sin57=0.8386705679454239
sin58=0.848048096156426 sin59=0.8571380022 sin60=0.8660254037844386
sin61=0.8746138007 sin62=0.8829475928589269 sin63=0.8910065241883678
sin64=0.898794046299167 sin65=0.9063077870366499 sin66=0.9138006009
sin67=0.9205048534524404 sin68=
如有疑问,请追问;如已解决,请采纳
确定角度。在计算三角函数的值之前,需要先确定角度的大小。角度可用度或弧度表示,一般情况下使用度数。2/5选择合适的三角函数公式。根据所求角度所在的象限以及已知条件,选择相应的三角函数公式进行计算。常见的三角函数包括正弦、余弦、正切、余切、正割、余割等。3/5将角度转化为弧度(可选)。在计算三角函数的值时,有些情况下需要将角度转化为弧度。常用的转化公式为:弧度 = 角度 × π / 180。4/5带入数值进行计算。在选择好三角函数公式之后,将已知条件带入公式中进行计算即可得到三角函数的值。5/5注意精度。在计算三角函数值时,需要注意精度问题。一般情况下,计算结果应该精确到小数点后几位。
三角函数值如下:
三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任意角的集合与一个比值的集合的变量之间的映射。
通常的三角函数是在平面直角坐标系中定义的,其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。
扩展资料
各个函数变化:数关系:tanα ·cotα=1,sinα ·cscα=1,cosα ·secα=1
商的关系:tanα=sinα/cosα cotα=cosα/sinα
积化合差公式:sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)];cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]
cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)];sinα ·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]
和差化积公式:sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
参考资料 百度百科——三角函数值
完整初中三角函数值表
(1)特殊角三角函数值 sin0=0 sin30=0.5 sin45=0.7071 二分之根号2 sin60=0.8660 二分之根号3 sin90=1 cos0=1 cos30=0.866025404 二分之根号3 cos45=0.707106781 二分之根号2 cos60=0.5 cos90=0 tan0=0 tan30=0.577350269 三分之根号3 tan45=1 tan60=1.732050808 根号3 tan90=无 cot0=无 cot30=1.732050808 根号3 cot45=1 cot60=0.577350269 三分之根号3 cot90=0 (2)0°~90°的任意角的三角函数值,查三角函数表。(见下) (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sinα≤1, 1≥cosα≥0, 当角度在0°
<α
0, cotα>0. “锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。 附:三角函数值表 sin0=0,
sin15=(√6-√2)/4 ,
sin30=1/2,
sin45=√2/2,
sin60=√3/2,
sin75=(√6+√2)/2 ,
sin90=1,
sin105=√2/2*(√3/2+1/2)
sin120=√3/2
sin135=√2/2
sin150=1/2
sin165=(√6-√2)/4
sin180=0
sin270=-1
sin360=0
完整初中三角函数值表如下图所示:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
扩展资料:
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
“初中数学必背三角函数公式、三角函数值”主要包括正弦、余弦、正切函数的定义式和关系式。
(1)∠A的正弦值=∠A的对边:斜边,记作sinA=a/c。(2)∠A的余弦值=∠A的邻边:斜边,记作cosA=b/c。(3)∠A的正切值=∠A的对边:∠A的邻边,记作tanA=a/b。
sin30°=1/2 sin45°= √2/2 sin60°=√3/2cos30°=√3/2 cos 45°= √2/2 cos60°=1/2tan30°=√3/3 tan45°=1 tan60°==√3
完整初中三角函数值表如下图所示:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
扩展资料:
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
</α
常用的三角函数值有哪些?
常用的三角函数值如下:
三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
六种基本函数:
函数名、正弦、余弦、正切、余切、正割、余割。
六种基本函数的符号:
sin、cos、tan、cot、sec、csc。
1、正弦函数:sin(A)=a/c。
2、余弦函数:cos(A)=b/c。
3、正切函数:tan(A)=a/b。
4、余切函数:cot(A)=b/a。
其中a为对边,b为临边,c为斜边。
三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。
三角函数值简介:
三角函数值(trigonometric function)是数学中属于初等函数中的超越函数的一类函数。其本质是任意角的集合与一个比值的集合的变量之间的映射。三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
记忆口诀一:三十,四五,六十度,三角函数记牢固;分母弦二切是三,分子要把根号添;一二三来三二一,切值三九二十七;递增正切和正弦,余弦函数要递减。
记忆口诀二:一二三三二一,戴上根号对半劈。两边根号三,中间竖旗杆。分清是增减,试把分母安。正首余末三,好记又简单。零度九十度,斜线z形连。端点均为零,余下竖横填。
初中数学常用三角函数公式表
初中数学常用三角函数公式表如下:
一、锐角三角函数公式:
sinα=∠α的对边/斜边;cosα=∠α的邻边/斜边;tanα=∠α的对边/∠α的邻边;cotα=∠α的邻边/∠α的对边
二、倍角公式
Sin2A=2SinACosA;Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1;tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))
三、三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α);cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)
四、三倍角公式推导
sin3a=sin(2a+a)=sin2acosa+cos2asina
四、辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中:
sint=B/(A^2+B^2)^(1/2);cost=A/(A^2+B^2)^(1/2);tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
五、降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
三角函数古希腊历史:
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。
对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。
到了公元14世纪,阿拉伯人将三角计算重新以算术方式代数化(古希腊人采用的是建立在几何上的推导方式)的努力为后来三角学从天文学中独立出来,成为了有更广泛应用的学科奠定了基础。
初中数学,直角三角形,30度,60度.90度的sin,cos,tan,的表格什么的,帮我写写。
表格如下:
sin30=1/2 sin60=√3/2 sin90=1
cos30=√3/2 cos60=1/2 cos90=0
tan30=√3/3 tan60=√3 tan90 无穷大
sin30°=1/2 cos30°=√3/2 tan30°=√3/3
sin45°=√2/2 cos45°=√2/2 tan45°=1
sin60°=√3/2 cos60°=1/2 tan60°=√3
sin90°=cos0°=1 tan90°不存在
扩展资料:
1、积化合差公式
sinα ·cosβ=(1/2)*[sin(α+β)+sin(α-β)]
cosα ·sinβ=(1/2)*[sin(α+β)-sin(α-β)]
cosα ·cosβ=(1/2)*[cos(α+β)+cos(α-β)]
sinα ·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]
2、和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
3、三倍角公式
sin3α=3sinα-4sin^3α;
cos3α=4cos^3α-3cosα
4、两角和与差的三角函数关系
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ )/(1-tanα ·tanβ)
tan(α-β)=(tanα-tanβ )/(1+tanα ·tanβ)
参考资料:百度百科-三角函数值
九年级数学三角函数公式表
关于九年级数学三角函数公式表如下:
锐角三角函数:锐角三角函数定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c;余弦(cos):邻边比斜边,即cosA=b/c;正切(tan):对边比邻边,即tanA=a/b;余切(cot):邻边比对边,即cotA=b/a;正割(sec):斜边比邻边,即secA=c/b;余割(csc):斜边比对边,即cscA=c/a。
三角函数记忆口诀:三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1, 连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
高中数学三角函数的值表是什么?
高中常用的三角函数值表通常包括正弦函数(sin)、余弦函数(cos)、正切函数(tan)、余切函数(cot)、正割函数(sec)和余割函数(csc)在特定角度上的数值。这些函数值表提供了特定角度的三角函数取值,使得学生们可以在解题或计算过程中快速查找参考。常见的三角函数值表一般给出了0度到360度(或0到2π弧度)之间的一些特定角度下的函数值。
以下是一个典型的三角函数值表的示例:
角度(度) 正弦值(sin) 余弦值(cos) 正切值(tan)
0 0 1 0
30 1/2 √3/2 √3/3
45 √2/2 √2/2 1
60 √3/2 1/2 √3
90 1 0 无穷大
请注意,这只是示例中的一小部分三角函数值,实际使用的三角函数值表可能会更加详细和完整。希望这个示例能帮助到您!
三角函数公式表
角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。接下来我们来看下三角函数公式表。
sin30°=1/2 sin45°=√2/2 sin60°=√3/2 cos30°=√3/2 cos45°=√2/2 cos60°=1/2 tan30°=√3/3 tan45°=1 tan60°=√3 cot30°=√3 cot45°=1 cot60°=√3/3 sin15°=(√6-√2)/4 sin75°=(√6+√2)/4 cos15°=(√6+√2)/4 cos75°=(√6-√2)/4(这四个可根据sin(45°±30°)=sin45°cos30°±cos45°sin30°得出) sin18°=(√5-1)/4 (这个值在高中竞赛和自招中会比较有用,即黄金分割的一半) 正弦定理:在△ABC中,a / sinA = b / sin B = c / sin C = 2R (其中,R为△ABC的外接圆的半径。
三角函数的诱导公式(六公式) 公式一: sin(α+k*2π)=sinα cos(α+k*2π)=cosα tan(α+k*2π)=tanα 公式二: sin(π+α) = -sinα cos(π+α) = -cosα tan(π+α)=tanα 公式三: sin(-α) = -sinα cos(-α) = cosα tan (-α)=-tanα 公式四: sin(π-α) = sinα cos(π-α) = -cosα tan(π-α) =-tanα 公式五: sin(π/2-α) = cosα cos(π/2-α) =sinα 由于π/2+α=π-(π/2-α),由公式四和公式五可得 公式六: sin(π/2+α)= cosα cos(π/2+α) = -sinα sin(π/2+α)= cosα cos(π/2+α)= -sinα tan(π/2+α)= -cotα cot(π/2+α)= -tanα sin(π/2-α)= cosα cos(π/2-α)= sinα tan(π/2-α)= cotα cot(π/2-α)= tanα sin(3π/2+α)= -cosα cos(3π/2+α)= sinα tan(3π/2+α)= -cotα cot(3π/2+α)= -tanα sin(3π/2-α)= -cosα cos(3π/2-α)= -sinα tan(3π/2-α)= cotα cot(3π/2-α)= tanα 诱导公式记背诀窍:奇变偶不变,符号看象限。 和(差)角公式
三角和公式 sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·coscγ-osα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanα·tanγ) (α+β+γ≠π/2+2kπ,α、β、γ≠π/2+2kπ) 积化和差的四个公式 sina*cosb=(sin(a+b)+sin(a-b))/2