python中update的用法,万字干货,Python语法大合集,一篇文章带你入门
python中update的用法,万字干货,Python语法大合集,一篇文章带你入门详细介绍
本文目录一览: 如何用python更新oracle数据库
1】首先下载驱动:(cx_Oracle)
http://www.python.net/crew/atuining/cx_Oracle/
不过要注意一下版本,根据你的情况加以选择。
【2】安装:
执行那个exe安装程序就可以了,它会copy一个cx_Oracle.pyd到{PYTHON_HOME}\Lib\site-packages目录下。
【3】执行一段测试程序: import cx_Oracle
con = cx_Oracle.connect( "xjtu_test", "37343734","xjtu.world")
cursor = con.cursor()
cursor.close()
con.close()
里边connect中的3个参数从左到右分别是:user, pass, TNS。
那个TNS可以用Oracle客户端工具中的Net Configuration Assistant来配置。
【4】具体的cx_Oracle API可以参考:
http://www.python.net/crew/atuining/cx_Oracle/html/cx_Oracle.html
好了,执行那段测试代码时你肯定遇到问题了,一般会有以下问题:
【1】import cx_Oracle 时报告找不到OCI.DLL:
到装了Oracle的机器上找一个,然后copy到{PYTHON_HOME}\Lib\site-packages目录下就可以了。
【2】cx_Oracle.connect 时报告RuntimeError: Unable to acquire Oracle environment handle:
这个比较麻烦,按以下步骤来解决:(可能不需要所有的步骤,我没有确认,不过把以下步骤都执行了,确实问题就解决了)
首先,确认你是在控制台下边来执行这个python脚本的。而不是某些ide,例如:PyDev(它们似乎无法载入os的环境变量)。
其实,在本机安装Oracle(只安客户端工具就可以了)。
最后,添加以下环境变量:(我给出我的,换成你自己的路径就可以了)
ORACLE_HOME=D:\Oracle\Ora81
PATH=D:\Oracle\Ora81\bin;{your_other_paths}
完成
用python更新oracle数据库:
1. 要想使Python可以操作Oracle数据库,首先需要安装cx_Oracle包,可以通过下面的地址来获取安装包:cx-oracle.sourceforge.net/
2. 另外还需要oracle的一些类库,此时需要在运行python的机器上安装Oracle Instant Client软件包,可以通过下面地址获得technetwork/database/features/instant-client/index-097480.html
找到符合自己平台的包,然后安装,这里我使用的是rpm包,所以使用以下命令安装
$ sudo rpm -ivh oracle-instantclient11.2-basic-11.2.0.3.0-1.i386.rpm
装完毕后还需要设置一下环境变量,如下
$ export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:/usr/lib/oracle/11.2/client/lib
然后写update语句对表进行更新:
import cx_Oracle //导入链接oracle的库
conn = cx_Oracle.connect('fkong/fkong@172.17.23.129/orcl') //建立与orcl的连接
cursor = conn.cursor () //打开游标
cursor.execute ("update test set COL1='u' where ID=1") //执行更新
conn.commit() //提交结果
cursor.close (); //关闭游标
conn.close ();//关闭连接
Python字典创建、基本操作以及常用方法
创建一个空字典自需要一对大括号即可,从已有的键-值对映射或关键字参数创建字典需要使用 dict 函数(类)
把一个列表转为字典,列表的每一项都是长度为2的序列。
还可使用 关键字实参 (**kwargs)来调用这个函数,如下所示:
字典的基本操作与序列十分相似:
字典与序列的不同:
方法 clear 删除所有的字典项(key-value)。
复制,得到原字典的一个新副本。
效果等同于调用 dict(d) 创建新字典。 copy() 执行的是 浅复制 ,若字典的值是一个可变对象,那么复制以后,相同一个键将关联到同一个对象,修改该对象,将同时修改两个字典。
模块copy中的函数deepcopy 可执行深复制。
方法fromkeys 创建一个新字典,其中包含指定的键,且每个键对应的值都是None,或者可以提供一个i额默认值。
方法get 为访问字典项提供了宽松的环境。通常,如果你试图访问字典中没有的项,将引发错误,而get直接返回None,或者可设置默认返回值。
当字典中不存在指定键时, setdefault(k,v) 添加一个指定键-值对;且返回指定键所关联的值。
这三个方法返回值属于一种名为 字典视图 的特殊类型。字典视图可用于迭代。另外,还可确定其长度以及对其执行成员资格检查。
这三个方法自大的特点是不可变,当你的接口试图对其他用户提供一个只读字典,而不希望他们修改的时候,这三个方法是很有用的;而且当原字典发生改变时,这些方法返回的对象也会跟着改变。
方法 pop 可用于获取与指定键相关联的值,并将该键-值对从字典中删除。
popitem随机删除一个键-值对,并返回一个二维的元组 (key, value) ,因为字典是无序的,所以其弹出的顺序也是不确定的。 书上说,这个方法在大数据量时执行效率很高,但没有亲测。
方法update 使用一个字典中的项来更新另一个字典。
python字典操作函数
字典是一种通过名字或者关键字引用的得数据结构,其键可以是数字、字符串、元组,这种结构类型也称之为映射。字典类型是Python中唯一内建的映射类型,基本的操作包括如下:
(1)len():返回字典中键—值对的数量;
(2)d[k]:返回关键字对于的值;
(3)d[k]=v:将值关联到键值k上;
(4)del d[k]:删除键值为k的项;
(5)key in d:键值key是否在d中,是返回True,否则返回False。
(6)clear函数:清除字典中的所有项
(7)copy函数:返回一个具有相同键值的新字典;deepcopy()函数使用深复制,复制其包含所有的值,这个方法可以解决由于副本修改而使原始字典也变化的问题
(8)fromkeys函数:使用给定的键建立新的字典,键默认对应的值为None
(9)get函数:访问字典成员
(10)has_key函数:检查字典中是否含有给出的键
(11)items和iteritems函数:items将所有的字典项以列表方式返回,列表中项来自(键,值),iteritems与items作用相似,但是返回的是一个迭代器对象而不是列表
(12)keys和iterkeys:keys将字典中的键以列表形式返回,iterkeys返回键的迭代器
(13)pop函数:删除字典中对应的键
(14)popitem函数:移出字典中的项
(15)setdefault函数:类似于get方法,获取与给定键相关联的值,也可以在字典中不包含给定键的情况下设定相应的键值
(16)update函数:用一个字典更新另外一个字典
(17)?values和itervalues函数:values以列表的形式返回字典中的值,itervalues返回值得迭代器,由于在字典中值不是唯一的,所以列表中可以包含重复的元素
一、字典的创建
1.1 直接创建字典
d={'one':1,'two':2,'three':3}
printd
printd['two']
printd['three']
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':1}
>>>
1.2 通过dict创建字典
# _*_ coding:utf-8 _*_
items=[('one',1),('two',2),('three',3),('four',4)]
printu'items中的内容:'
printitems
printu'利用dict创建字典,输出字典内容:'
d=dict(items)
printd
printu'查询字典中的内容:'
printd['one']
printd['three']
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
items中的内容:
[('one',1), ('two',2), ('three',3), ('four',4)]
利用dict创建字典,输出字典内容:
{'four':4,'three':3,'two':2,'one':1}
查询字典中的内容:
>>>
或者通过关键字创建字典
# _*_ coding:utf-8 _*_
d=dict(one=1,two=2,three=3)
printu'输出字典内容:'
printd
printu'查询字典中的内容:'
printd['one']
printd['three']
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
输出字典内容:
{'three':3,'two':2,'one':1}
查询字典中的内容:
>>>
二、字典的格式化字符串
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3,'four':4}
printd
print"three is %(three)s."%d
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'four':4,'three':3,'two':2,'one':1}
threeis3.
>>>
三、字典方法
3.1?clear函数:清除字典中的所有项
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3,'four':4}
printd
d.clear()
printd
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'four':4,'three':3,'two':2,'one':1}
{}
>>>
请看下面两个例子
3.1.1
# _*_ coding:utf-8 _*_
d={}
dd=d
d['one']=1
d['two']=2
printdd
d={}
printd
printdd
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'two':2,'one':1}
{}
{'two':2,'one':1}
>>>
3.1.2
# _*_ coding:utf-8 _*_
d={}
dd=d
d['one']=1
d['two']=2
printdd
d.clear()
printd
printdd
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'two':2,'one':1}
{}
{}
>>>
3.1.2与3.1.1唯一不同的是在对字典d的清空处理上,3.1.1将d关联到一个新的空字典上,这种方式对字典dd是没有影响的,所以在字典d被置空后,字典dd里面的值仍旧没有变化。但是在3.1.2中clear方法清空字典d中的内容,clear是一个原地操作的方法,使得d中的内容全部被置空,这样dd所指向的空间也被置空。
3.2?copy函数:返回一个具有相同键值的新字典
# _*_ coding:utf-8 _*_
x={'one':1,'two':2,'three':3,'test':['a','b','c']}
printu'初始X字典:'
printx
printu'X复制到Y:'
y=x.copy()
printu'Y字典:'
printy
y['three']=33
printu'修改Y中的值,观察输出:'
printy
printx
printu'删除Y中的值,观察输出'
y['test'].remove('c')
printy
printx
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
初始X字典:
{'test': ['a','b','c'],'three':3,'two':2,'one':1}
X复制到Y:
Y字典:
{'test': ['a','b','c'],'one':1,'three':3,'two':2}
修改Y中的值,观察输出:
{'test': ['a','b','c'],'one':1,'three':33,'two':2}
{'test': ['a','b','c'],'three':3,'two':2,'one':1}
删除Y中的值,观察输出
{'test': ['a','b'],'one':1,'three':33,'two':2}
{'test': ['a','b'],'three':3,'two':2,'one':1}
>>>
注:在复制的副本中对值进行替换后,对原来的字典不产生影响,但是如果修改了副本,原始的字典也会被修改。deepcopy函数使用深复制,复制其包含所有的值,这个方法可以解决由于副本修改而使原始字典也变化的问题。
# _*_ coding:utf-8 _*_
fromcopyimportdeepcopy
x={}
x['test']=['a','b','c','d']
y=x.copy()
z=deepcopy(x)
printu'输出:'
printy
printz
printu'修改后输出:'
x['test'].append('e')
printy
printz
运算输出:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
输出:
{'test': ['a','b','c','d']}
{'test': ['a','b','c','d']}
修改后输出:
{'test': ['a','b','c','d','e']}
{'test': ['a','b','c','d']}
>>>
3.3?fromkeys函数:使用给定的键建立新的字典,键默认对应的值为None
# _*_ coding:utf-8 _*_
d=dict.fromkeys(['one','two','three'])
printd
运算输出:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':None,'two':None,'one':None}
>>>
或者指定默认的对应值
# _*_ coding:utf-8 _*_
d=dict.fromkeys(['one','two','three'],'unknow')
printd
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':'unknow','two':'unknow','one':'unknow'}
>>>
3.4?get函数:访问字典成员
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3}
printd
printd.get('one')
printd.get('four')
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':1}
1
None
>>>
注:get函数可以访问字典中不存在的键,当该键不存在是返回None
3.5?has_key函数:检查字典中是否含有给出的键
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3}
printd
printd.has_key('one')
printd.has_key('four')
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':1}
True
False
>>>
3.6?items和iteritems函数:items将所有的字典项以列表方式返回,列表中项来自(键,值),iteritems与items作用相似,但是返回的是一个迭代器对象而不是列表
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3}
printd
list=d.items()
forkey,valueinlist:
??printkey,':',value
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':1}
three :3
two :2
one :1
>>>
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3}
printd
it=d.iteritems()
fork,vinit:
??print"d[%s]="%k,v
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':1}
d[three]=3
d[two]=2
d[one]=1
>>>
3.7?keys和iterkeys:keys将字典中的键以列表形式返回,iterkeys返回键的迭代器
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3}
printd
printu'keys方法:'
list=d.keys()
printlist
printu'\niterkeys方法:'
it=d.iterkeys()
forxinit:
??printx
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':1}
keys方法:
['three','two','one']
iterkeys方法:
three
two
one
>>>
3.8?pop函数:删除字典中对应的键
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3}
printd
d.pop('one')
printd
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':1}
{'three':3,'two':2}
>>>
3.9?popitem函数:移出字典中的项
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3}
printd
d.popitem()
printd
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':1}
{'two':2,'one':1}
>>>
3.10?setdefault函数:类似于get方法,获取与给定键相关联的值,也可以在字典中不包含给定键的情况下设定相应的键值
# _*_ coding:utf-8 _*_
d={'one':1,'two':2,'three':3}
printd
printd.setdefault('one',1)
printd.setdefault('four',4)
printd
运算结果:
{'three':3,'two':2,'one':1}
{'four':4,'three':3,'two':2,'one':1}
>>>
3.11?update函数:用一个字典更新另外一个字典
# _*_ coding:utf-8 _*_
d={
??'one':123,
??'two':2,
??'three':3
??}
printd
x={'one':1}
d.update(x)
printd
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
{'three':3,'two':2,'one':123}
{'three':3,'two':2,'one':1}
>>>
3.12?values和itervalues函数:values以列表的形式返回字典中的值,itervalues返回值得迭代器,由于在字典中值不是唯一的,所以列表中可以包含重复的元素
# _*_ coding:utf-8 _*_
d={
??'one':123,
??'two':2,
??'three':3,
??'test':2
??}
printd.values()
运算结果:
=======RESTART: C:\Users\Mr_Deng\Desktop\test.py=======
[2,3,2,123]
>>>
python 数据库pony怎么用update
def query(self, sql):
connect = self.connect()
cur = connect.cursor()
cur.execute(sql)
index = cur.description
result = []
for res in cur.fetchall():
row = {}
for i in range(len(index)-1):
row[index[i][0]] = res[i]
result.append(row)
connect.close()
return result
这个方法返回查询结果就是带字段名的{‘字段名’:‘值’}
python中set的用法小结
python提供了常用的数据结构,其中之一就是set,python中的set是不支持索引的、值不能重复、无需插入的容器。
简单记录下set常用的操作函数:
1.新建一个set:
set("Hello"),这样会转成单个字符的值进行插入,结果是'H','e','l','o','l'因为重复只能插入一次。
2.增加一个元素:
add()用于增加一个元素值,
update([]),用于增加多个元素值,参数为list,注意如果用add增加多个值,会报参数类型错误。
3.删除一个元素:
remove()用于删除一个set中的元素,这个值在set中必须存在,如果不存在的话,会引发KeyError错误。
discard()用于删除一个set中的元素,这个值不必一定存在,不存在的情况下删除也不会触发错误。
4.随机删除函数:
set提供了一个pop()函数,这个函数随机返回一个元素值,然后把这个值删除,如果set为空,调用这个函数会返回Key错误。
5.清空函数:
clear(),将set全部清空。
6.测试单个元素在集合内是否存在:
in 或者 not in 如果需要判断一个值在集合内是否存在,in就能满足要求,例如2 in set_num 如果存在则返回True,否则返回False。
7.测试两个集合是否包含,子集操作:
issubset和issuperset,
s1.issubset(s2)? :测试是否?s1?中的每一个元素都在?s2?中,运算符操作为 s1<=s2;
s2.issuperset(s1)? :测试是否?s1?中的每一个元素都在?s2?中,运算符操作为 s1>=s2;//注意是s2调用,参数为s1.
8.集合的并集:
union s1.union(s2)? :返回一个新集合,新集合包含s1,s2的所有元素,等价的运算符为 | 。
9.集合的交集:
intersection,s1.intersection(s2),返回s1和s2中相同部分
10.其他操作:
s1.difference(s2):包含s1中有,但是s2没有的元素的集合。
s1symmetric_difference(s2):包含s1和s2中不相同的元素的集合。
以上只是一部分操作的描述,如果有错误,敬请指正。
万字干货,Python语法大合集,一篇文章带你入门
这份资料非常纯粹,只有Python的基础语法,专门针对想要学习Python的小白。
Python中用#表示单行注释,#之后的同行的内容都会被注释掉。
使用三个连续的双引号表示多行注释,两个多行注释标识之间内容会被视作是注释。
Python当中的数字定义和其他语言一样:
我们分别使用+, -, *, /表示加减乘除四则运算符。
这里要注意的是,在Python2当中,10/3这个操作会得到3,而不是3.33333。因为除数和被除数都是整数,所以Python会自动执行整数的计算,帮我们把得到的商取整。如果是10.0 / 3,就会得到3.33333。目前Python2已经不再维护了,可以不用关心其中的细节。
但问题是Python是一个 弱类型 的语言,如果我们在一个函数当中得到两个变量,是无法直接判断它们的类型的。这就导致了同样的计算符可能会得到不同的结果,这非常蛋疼。以至于程序员在运算除法的时候,往往都需要手工加上类型转化符,将被除数转成浮点数。
在Python3当中拨乱反正,修正了这个问题,即使是两个整数相除,并且可以整除的情况下,得到的结果也一定是浮点数。
如果我们想要得到整数,我们可以这么操作:
两个除号表示 取整除 ,Python会为我们保留去除余数的结果。
除了取整除操作之外还有取余数操作,数学上称为取模,Python中用%表示。
Python中支持 乘方运算 ,我们可以不用调用额外的函数,而使用**符号来完成:
当运算比较复杂的时候,我们可以用括号来强制改变运算顺序。
Python中用首字母大写的True和False表示真和假。
用and表示与操作,or表示或操作,not表示非操作。而不是C++或者是Java当中的&&, || 和!。
在Python底层, True和False其实是1和0 ,所以如果我们执行以下操作,是不会报错的,但是在逻辑上毫无意义。
我们用==判断相等的操作,可以看出来True==1, False == 0.
我们要小心Python当中的bool()这个函数,它并不是转成bool类型的意思。如果我们执行这个函数,那么 只有0会被视作是False,其他所有数值都是True :
Python中用==判断相等,>表示大于,>=表示大于等于,
<表示小于,<=表示小于等于,!=表示不等。
我们可以用and和or拼装各个逻辑运算:
注意not,and,or之间的优先级,其中not > and > or。如果分不清楚的话,可以用括号强行改变运行顺序。
关于list的判断,我们常用的判断有两种,一种是刚才介绍的==,还有一种是is。我们有时候也会简单实用is来判断,那么这两者有什么区别呢?我们来看下面的例子:
Python是全引用的语言,其中的对象都使用引用来表示。is判断的就是 两个引用是否指向同一个对象 ,而==则是判断两个引用指向的具体内容是否相等。举个例子,如果我们把引用比喻成地址的话,is就是判断两个变量的是否指向同一个地址,比如说都是沿河东路XX号。而==则是判断这两个地址的收件人是否都叫张三。
显然,住在同一个地址的人一定都叫张三,但是住在不同地址的两个人也可以都叫张三,也可以叫不同的名字。所以如果a is b,那么a == b一定成立,反之则不然。
Python当中对字符串的限制比较松, 双引号和单引号都可以表示字符串 ,看个人喜好使用单引号或者是双引号。我个人比较喜欢单引号,因为写起来方便。
字符串也支持+操作,表示两个字符串相连。除此之外,我们把两个字符串写在一起,即使没有+,Python也会为我们拼接:
我们可以使用[]来查找字符串当中某个位置的字符,用 len 来计算字符串的长度。
我们可以在字符串前面 加上f表示格式操作 ,并且在格式操作当中也支持运算,比如可以嵌套上len函数等。不过要注意,只有Python3.6以上的版本支持f操作。
最后是None的判断,在Python当中None也是一个对象, 所有为None的变量都会指向这个对象 。根据我们前面所说的,既然所有的None都指向同一个地址,我们需要判断一个变量是否是None的时候,可以使用is来进行判断,当然用==也是可以的,不过我们通常使用is。
理解了None之后,我们再回到之前介绍过的bool()函数,它的用途其实就是判断值是否是空。所有类型的 默认空值会被返回False ,否则都是True。比如0,"",[], {}, ()等。
除了上面这些值以外的所有值传入都会得到True。
Python当中的标准输入输出是 input和print 。
print会输出一个字符串,如果传入的不是字符串会自动调用__str__方法转成字符串进行输出。 默认输出会自动换行 ,如果想要以不同的字符结尾代替换行,可以传入end参数:
使用input时,Python会在命令行接收一行字符串作为输入。可以在input当中传入字符串,会被当成提示输出:
Python支持 三元表达式 ,但是语法和C++不同,使用if else结构,写成:
上段代码等价于:
Python中用[]表示空的list,我们也可以直接在其中填充元素进行初始化:
使用append和pop可以在list的末尾插入或者删除元素:
list可以通过[]加上下标访问指定位置的元素,如果是负数,则表示 倒序访问 。-1表示最后一个元素,-2表示倒数第二个,以此类推。如果访问的元素超过数组长度,则会出发 IndexError 的错误。
list支持切片操作,所谓的切片则是从原list当中 拷贝 出指定的一段。我们用start: end的格式来获取切片,注意,这是一个 左闭右开区间 。如果留空表示全部获取,我们也可以额外再加入一个参数表示步长,比如[1:5:2]表示从1号位置开始,步长为2获取元素。得到的结果为[1, 3]。如果步长设置成-1则代表反向遍历。
如果我们要指定一段区间倒序,则前面的start和end也需要反过来,例如我想要获取[3: 6]区间的倒序,应该写成[6:3:-1]。
只写一个:,表示全部拷贝,如果用is判断拷贝前后的list会得到False。可以使用del删除指定位置的元素,或者可以使用remove方法。
insert方法可以 指定位置插入元素 ,index方法可以查询某个元素第一次出现的下标。
list可以进行加法运算,两个list相加表示list当中的元素合并。 等价于使用extend 方法:
我们想要判断元素是否在list中出现,可以使用 in关键字 ,通过使用len计算list的长度:
tuple和list非常接近,tuple通过()初始化。和list不同, tuple是不可变对象 。也就是说tuple一旦生成不可以改变。如果我们修改tuple,会引发TypeError异常。
由于小括号是有改变优先级的含义,所以我们定义单个元素的tuple, 末尾必须加上逗号 ,否则会被当成是单个元素:
tuple支持list当中绝大部分操作:
我们可以用多个变量来解压一个tuple:
解释一下这行代码:
我们在b的前面加上了星号, 表示这是一个list 。所以Python会在将其他变量对应上值的情况下,将剩下的元素都赋值给b。
补充一点,tuple本身虽然是不可变的,但是 tuple当中的可变元素是可以改变的 。比如我们有这样一个tuple:
我们虽然不能往a当中添加或者删除元素,但是a当中含有一个list,我们可以改变这个list类型的元素,这并不会触发tuple的异常:
dict也是Python当中经常使用的容器,它等价于C++当中的map,即 存储key和value的键值对 。我们用{}表示一个dict,用:分隔key和value。
对 。我们用{}表示一个dict,用:分隔key和value。
dict的key必须为不可变对象,所以 list、set和dict不可以作为另一个dict的key ,否则会抛出异常:
我们同样用[]查找dict当中的元素,我们传入key,获得value,等价于get方法。
我们可以call dict当中的keys和values方法,获取dict当中的所有key和value的集合,会得到一个list。在Python3.7以下版本当中,返回的结果的顺序可能和插入顺序不同,在Python3.7及以上版本中,Python会保证返回的顺序和插入顺序一致:
我们也可以用in判断一个key是否在dict当中,注意只能判断key。
如果使用[]查找不存在的key,会引发KeyError的异常。如果使用 get方法则不会引起异常,只会得到一个None :
setdefault方法可以 为不存在的key 插入一个value,如果key已经存在,则不会覆盖它:
我们可以使用update方法用另外一个dict来更新当前dict,比如a.update(b)。对于a和b交集的key会被b覆盖,a当中不存在的key会被插入进来:
我们一样可以使用del删除dict当中的元素,同样只能传入key。
Python3.5以上的版本支持使用**来解压一个dict:
set是用来存储 不重复元素 的容器,当中的元素都是不同的,相同的元素会被删除。我们可以通过set(),或者通过{}来进行初始化。注意当我们使用{}的时候,必须要传入数据,否则Python会将它和dict弄混。
set当中的元素也必须是不可变对象,因此list不能传入set。
可以调用add方法为set插入元素:
set还可以被认为是集合,所以它还支持一些集合交叉并补的操作。
set还支持 超集和子集的判断 ,我们可以用大于等于和小于等于号判断一个set是不是另一个的超集或子集:
和dict一样,我们可以使用in判断元素在不在set当中。用copy可以拷贝一个set。
Python当中的判断语句非常简单,并且Python不支持switch,所以即使是多个条件,我们也只能 罗列if-else 。
我们可以用in来循环迭代一个list当中的内容,这也是Python当中基本的循环方式。
如果我们要循环一个范围,可以使用range。range加上一个参数表示从0开始的序列,比如range(10),表示[0, 10)区间内的所有整数:
如果我们传入两个参数,则 代表迭代区间的首尾 。
如果我们传入第三个元素,表示每次 循环变量自增的步长 。
如果使用enumerate函数,可以 同时迭代一个list的下标和元素 :
while循环和C++类似,当条件为True时执行,为false时退出。并且判断条件不需要加上括号:
Python当中使用 try和except捕获异常 ,我们可以在except后面限制异常的类型。如果有多个类型可以写多个except,还可以使用else语句表示其他所有的类型。finally语句内的语法 无论是否会触发异常都必定执行 :
在Python当中我们经常会使用资源,最常见的就是open打开一个文件。我们 打开了文件句柄就一定要关闭 ,但是如果我们手动来编码,经常会忘记执行close操作。并且如果文件异常,还会触发异常。这个时候我们可以使用with语句来代替这部分处理,使用with会 自动在with块执行结束或者是触发异常时关闭打开的资源 。
以下是with的几种用法和功能:
凡是可以使用in语句来迭代的对象都叫做 可迭代对象 ,它和迭代器不是一个含义。这里只有可迭代对象的介绍,想要了解迭代器的具体内容,请移步传送门:
Python——五分钟带你弄懂迭代器与生成器,夯实代码能力
当我们调用dict当中的keys方法的时候,返回的结果就是一个可迭代对象。
我们 不能使用下标来访问 可迭代对象,但我们可以用iter将它转化成迭代器,使用next关键字来获取下一个元素。也可以将它转化成list类型,变成一个list。
使用def关键字来定义函数,我们在传参的时候如果指定函数内的参数名, 可以不按照函数定义的顺序 传参:
可以在参数名之前加上*表示任意长度的参数,参数会被转化成list:
也可以指定任意长度的关键字参数,在参数前加上**表示接受一个dict:
当然我们也可以两个都用上,这样可以接受任何参数:
传入参数的时候我们也可以使用*和**来解压list或者是dict:
Python中的参数 可以返回多个值 :
函数内部定义的变量即使和全局变量重名,也 不会覆盖全局变量的值 。想要在函数内部使用全局变量,需要加上 global 关键字,表示这是一个全局变量:
Python支持 函数式编程 ,我们可以在一个函数内部返回一个函数:
Python中可以使用lambda表示 匿名函数 ,使用:作为分隔,:前面表示匿名函数的参数,:后面的是函数的返回值:
我们还可以将函数作为参数使用map和filter,实现元素的批量处理和过滤。关于Python中map、reduce和filter的使用,具体可以查看之前的文章:
五分钟带你了解map、reduce和filter
我们还可以结合循环和判断语来给list或者是dict进行初始化:
使用 import语句引入一个Python模块 ,我们可以用.来访问模块中的函数或者是类。
我们也可以使用from import的语句,单独引入模块内的函数或者是类,而不再需要写出完整路径。使用from import *可以引入模块内所有内容(不推荐这么干)
可以使用as给模块内的方法或者类起别名:
我们可以使用dir查看我们用的模块的路径:
这么做的原因是如果我们当前的路径下也有一个叫做math的Python文件,那么 会覆盖系统自带的math的模块 。这是尤其需要注意的,不小心会导致很多奇怪的bug。
我们来看一个完整的类,相关的介绍都在注释当中
以上内容的详细介绍之前也有过相关文章,可以查看:
Python—— slots ,property和对象命名规范
下面我们来看看Python当中类的使用:
这里解释一下,实例和对象可以理解成一个概念,实例的英文是instance,对象的英文是object。都是指类经过实例化之后得到的对象。
继承可以让子类 继承父类的变量以及方法 ,并且我们还可以在子类当中指定一些属于自己的特性,并且还可以重写父类的一些方法。一般我们会将不同的类放在不同的文件当中,使用import引入,一样可以实现继承。
我们创建一个蝙蝠类:
我们再创建一个蝙蝠侠的类,同时继承Superhero和Bat:
执行这个类:
我们可以通过yield关键字创建一个生成器,每次我们调用的时候执行到yield关键字处则停止。下次再次调用则还是从yield处开始往下执行:
除了yield之外,我们还可以使用()小括号来生成一个生成器:
关于生成器和迭代器更多的内容,可以查看下面这篇文章:
五分钟带你弄懂迭代器与生成器,夯实代码能力
我们引入functools当中的wraps之后,可以创建一个装饰器。装饰器可以在不修改函数内部代码的前提下,在外面包装一层其他的逻辑:
装饰器之前也有专门的文章详细介绍,可以移步下面的传送门:
一文搞定Python装饰器,看完面试不再慌
不知道有多少小伙伴可以看到结束,原作者的确非常厉害,把Python的基本操作基本上都囊括在里面了。如果都能读懂并且理解的话,那么Python这门语言就算是入门了。
如果你之前就有其他语言的语言基础,我想本文读完应该不用30分钟。当然在30分钟内学会一门语言是不可能的,也不是我所提倡的。但至少通过本文我们可以做到熟悉Python的语法,知道大概有哪些操作,剩下的就要我们亲自去写代码的时候去体会和运用了。
根据我的经验,在学习一门新语言的前期,不停地查阅资料是免不了的。希望本文可以作为你在使用Python时候的查阅文档。
最后,我这里有各种免费的编程类资料,有需要的及时私聊我,回复"学习",分享给大家,正在发放中............
</表示小于,<=表示小于等于,!=表示不等。
如何用python更新mysql数据库数据
mysql> show databases; // 查看当前所有的数据库
+--------------------+
| Database |
+--------------------+
| information_schema |
| csvt |
| csvt04 |
| mysql |
| performance_schema |
| test |
+--------------------+
6 rows in set (0.18 sec)
mysql> use test; //作用与test数据库
Database changed
mysql> show tables; //查看test库下面的表
Empty set (0.00 sec)
//创建user表,name 和password 两个字段
mysql> CREATE TABLE user (name VARCHAR(20),password VARCHAR(20)); Query OK, 0 rows affected (0.27 sec)
//向user表内插入若干条数据
mysql> insert into user values('Tom','1321');
Query OK, 1 row affected (0.05 sec)
mysql> insert into user values('Alen','7875');
Query OK, 1 row affected (0.08 sec)
mysql> insert into user values('Jack','7455');
Query OK, 1 row affected (0.04 sec)
//查看user表的数据
mysql> select * from user;
+------+----------+
| name | password |
+------+----------+
| Tom | 1321 |
| Alen | 7875 |
| Jack | 7455 |
+------+----------+
3 rows in set (0.01 sec)
//删除name 等于Jack的数据
mysql> delete from user where name = 'Jack';
Query OK, 1 rows affected (0.06 sec)
//修改name等于Alen 的password 为 1111
mysql> update user set password='1111' where name = 'Alen';
Query OK, 1 row affected (0.05 sec)
Rows matched: 1 Changed: 1 Warnings: 0
//查看表内容
mysql> select * from user;
+--------+----------+
| name | password |
+--------+----------+
| Tom | 1321 |
| Alen | 1111 |
+--------+----------+
3 rows in set (0.00 sec)
MySQL 的 Binlog 记录着 MySQL 数据库的所有变更信息,了解 Binlog 的结构可以帮助我们解析Binlog,甚至对 Binlog 进行一些修改,或者说是“篡改”,例如实现类似于 Oracle 的 flashback 的功能,恢复误删除的记录,把 update 的记录再还原回去等。本文将带您探讨一下这些神奇功能的实现,您会发现比您想象地要简单得多。本文指的 Binlog 是 ROW 模式的 Binlog,这也是 MySQL 8 里的默认模式,STATEMENT 模式因为使用中有很多限制,现在用得越来越少了。
Binlog 由事件(event)组成,请注意是事件(event)不是事务(transaction),一个事务可以包含多个事件。事件描述对数据库的修改内容。
现在我们已经了解了 Binlog 的结构,我们可以试着修改 Binlog 里的数据。例如前面举例的 Binlog 删除了一条记录,我们可以试着把这条记录恢复,Binlog 里面有个删除行(DELETE_ROWS_EVENT)的事件,就是这个事件删除了记录,这个事件和写行(WRITE_ROWS_EVENT)的事件的数据结构是完全一样的,只是删除行事件的类型是 32,写行事件的类型是 30,我们把对应的 Binlog 位置的 32 改成 30 即可把已经删除的记录再插入回去。从前面的 “show binlog events” 里面可看到这个 DELETE_ROWS_EVENT 是从位置 378 开始的,这里的位置就是 Binlog 文件的实际位置(以字节为单位)。从事件(event)的结构里面可以看到 type_code 是在 event 的第 5 个字节,我们写个 Python 小程序把把第383(378+5=383)字节改成 30 即可。当然您也可以用二进制编辑工具来改。
找出 Binlog 中的大事务
由于 ROW 模式的 Binlog 是每一个变更都记录一条日志,因此一个简单的 SQL,在 Binlog 里可能会产生一个巨无霸的事务,例如一个不带 where 的 update 或 delete 语句,修改了全表里面的所有记录,每条记录都在 Binlog 里面记录一次,结果是一个巨大的事务记录。这样的大事务经常是产生麻烦的根源。我的一个客户有一次向我抱怨,一个 Binlog 前滚,滚了两天也没有动静,我把那个 Binlog 解析了一下,发现里面有个事务产生了 1.4G 的记录,修改了 66 万条记录!下面是一个简单的找出 Binlog 中大事务的 Python 小程序,我们知道用 mysqlbinlog 解析的 Binlog,每个事务都是以 BEGIN 开头,以 COMMIT 结束。我们找出 BENGIN 前面的 “# at” 的位置,检查 COMMIT 后面的 “# at” 位置,这两个位置相减即可计算出这个事务的大小,下面是这个 Python 程序的例子。
切割 Binlog 中的大事务
对于大的事务,MySQL 会把它分解成多个事件(注意一个是事务 TRANSACTION,另一个是事件 EVENT),事件的大小由参数 binlog-row-event-max-size 决定,这个参数默认是 8K。因此我们可以把若干个事件切割成一个单独的略小的事务
ROW 模式下,即使我们只更新了一条记录的其中某个字段,也会记录每个字段变更前后的值,这个行为是 binlog_row_image 参数控制的,这个参数有 3 个值,默认为 FULL,也就是记录列的所有修改,即使字段没有发生变更也会记录。这样我们就可以实现类似 Oracle 的 flashback 的功能,我个人估计 MySQL 未来的版本从可能会基于 Binlog 推出这样的功能。
了解了 Binlog 的结构,再加上 Python 这把瑞士军刀,我们还可以实现很多功能,例如我们可以统计哪个表被修改地最多?我们还可以把 Binlog 切割成一段一段的,然后再重组,可以灵活地进行 MySQL 数据库的修改和迁移等工作。
利用Python进行数据分析笔记:3.1数据结构
元组是一种固定长度、不可变的Python对象序列。创建元组最简单的办法是用逗号分隔序列值:
tuple 函数将任意序列或迭代器转换为元组:
中括号 [] 可以获取元组的元素, Python中序列索引从0开始 :
元组一旦创建,各个位置上的对象是无法被修改的,如果元组的一个对象是可变的,例如列表,你可以在它内部进行修改:
可以使用 + 号连接元组来生成更长的元组:
元组乘以整数,则会和列表一样,生成含有多份拷贝的元组:
将元组型的表达式赋值给变量,Python会对等号右边的值进行拆包:
拆包的一个常用场景就是遍历元组或列表组成的序列:
*rest 用于在函数调用时获取任意长度的位置参数列表:
count 用于计量某个数值在元组中出现的次数:
列表的长度可变,内容可以修改。可以使用 [] 或者 list 类型函数来定义列表:
append 方法将元素添加到列表尾部:
insert 方法可以将元素插入到指定列表位置: ( 插入位置范围在0到列表长度之间 )
pop 是 insert 的反操作,将特定位置的元素移除并返回:
remove 方法会定位第一个符合要求的值并移除它:
in 关键字可以检查一个值是否在列表中; not in 表示不在:
+ 号可以连接两个列表:
extend 方法可以向该列表添加多个元素:
使用 extend 将元素添加到已经存在的列表是更好的方式,比 + 快。
sort 方法可以对列表进行排序:
key 可以传递一个用于生成排序值的函数,例如通过字符串的长度进行排序:
bisect.bisect 找到元素应当被插入的位置,返回位置信息 bisect.insort 将元素插入到已排序列表的相应位置保持序列排序
bisect 模块的函数并不会检查列表是否已经排序,因此对未排序列表使用bisect不会报错,但是可能导致不正确结果
切片符号可以对大多数序列类型选取子集,基本形式是 [start:stop] 起始位置start索引包含,结束位置stop索引不包含
切片还可以将序列赋值给变量:
start和stop可以省略,默认传入起始位置或结束位置,负索引可以从序列尾部进行索引:
步进值 step 可以在第二个冒号后面使用, 意思是每隔多少个数取一个值:
对列表或元组进行翻转时,一种很聪明的用法时向步进值传值-1:
dict(字典)可能是Python内建数据结构中最重要的,它更为常用的名字是 哈希表 或者 关联数组 。 字典是键值对集合,其中键和值都是Python对象。 {} 是创建字典的一种方式,字典中用逗号将键值对分隔:
你可以访问、插入或设置字典中的元素,:
in 检查字典是否含有一个键:
del 或 pop 方法删除值, pop 方法会在删除的同时返回被删的值,并删除键:
update 方法将两个字典合并: update方法改变了字典元素位置,对于字典中已经存在的键,如果传给update方法的数据也含有相同的键,则它的值将会被覆盖。
字典的值可以是任何Python对象,但键必须是不可变的对象,比如标量类型(整数、浮点数、字符串)或元组(且元组内对象也必须是不可变对象)。 通过 hash 函数可以检查一个对象是否可以哈希化(即是否可以用作字典的键):
集合是一种无序且元素唯一的容器。
set 函数或者是用字面值集与大括号,创建集合:
union 方法或 | 二元操作符获得两个集合的联合即两个集合中不同元素的并集:
intersection 方法或 & 操作符获得交集即两个集合中同时包含的元素:
常用的集合方法列表:
和字典类似,集合的元素必须是不可变的。如果想要包含列表型的元素,必须先转换为元组: