百度
360搜索
搜狗搜索

cluster聚类分析,聚类分析方法应用于哪些问题的研究详细介绍

本文目录一览: 聚类分析的结果和意义

问题一:聚类分析的意义是什么 科技名词定义中文名称:聚类分析 英文名称:cluster *** ysis 定义1:按照某种距离算法对数据点分类。 应用学科:地理学(一级学科);数量地理学(二级学科) 定义2:把观测或变量按一定规则分成组或类的数学分析方法。 应用学科:生态学(一级学科);数学生态学(二级学工)
聚类分析指将物理或抽象对象的 *** 分组成为由类似的对象组成的多个类的分析过程。它是一种重要的人类行为。聚类分析的目标就是在相似的基础上收集数据来分类。聚类源于很多领域,包括数学,计算机科学,统计学,生物学和经济学。在不同的应用领域,很多聚类技术都得到了发展,这些技术方法被用作描述数据,衡量不同数据源间的相似性,以及把数据源分类到不同的簇中。

问题二:数据挖掘,聚类分析算法研究的目的和意义是什么! 15分 图像分割
基本原理:根据图像的组成结构和应用需求将图像划分为若干个互不相交的子区域的过程。这些子区域四某种意义下具有共同属性的像素的连通 *** 。常用方法有:
1) 以区域为对象进行分割,以相似性原则作为分割的依据,即可根据图像的灰度、色彩、变换关系等方面的特征相似来划分图像的子区域,并将各像素划归到相应物体或区域的像素聚类方法,即区域法;
2) 以物体边界为对象进行分割,通过直接确定区域间的边界来实现分割;
3) 先检测边缘像素,再将边缘像素连接起来构成边界形成分割。
具体的阈值分割:
阈值分割方法分为以下3类:
1) 全局阈值:T=T[p(x,y)〕,即仅根据f(x,y)来选取阈值,阈值仅与各个图像像素的本身性质有关。
2) 局部阈值:T=T[f(x,y),p(x,y)],阈值与图像像素的本身性质和局部区域性质相关。
3) 动态阈值:T=T[x,y,f(x,y),p(x,y)],阈值与像素坐标,图像像素的本身性质和局部区域性质相关。
全局阈值对整幅图像仅设置一个分割阈值,通常在图像不太复杂、灰度分布较集中的情况下采用;局部阈值则将图像划分为若干个子图像,并对每个子图像设定局部阈值;动态阈值是根据空间信息和灰度信息确定。局部阈值分割法虽然能改善分割效果,但存在几个缺点:
1) 每幅子图像的尺寸不能太小,否则统计出的结果无意义。
2) 每幅图像的分割是任意的,如果有一幅子图像正好落在目标区域或背景区域,而根据统计结果对其进行分割,也许会产生更差的结果。
3) 局部阈值法对每一幅子图像都要进行统计,速度慢,难以适应实时性的要求。
全局阈值分割方法在图像处理中应用比较多,它在整幅图像内采用固定的阈值分割图像。考虑到全局阈值分割方法应用的广泛性,本文所着重讨论的就是全局阈值分割方法中的直方图双峰法和基于遗传算法的最大类间方差法。在本节中,将重点讨论灰度直方图双峰法,最大类间方差法以及基于遗传算法的最大类间方差法留待下章做继续深入地讨论。
参详《数字图像处理》工具:MATLAB或VC++

问题三:聚类分析方法有什么好处 5分 聚类分析:将个体(样品)或者对象(变量)按相似程度(距离远近)划分类别,使得同一类中的元素之间的相似性比其他类的元素的相似性更强。目的在于使类间元素的同质性最大化和类与类间元素的异质性最大化。其主要依据是聚到同一个数据集中的样本应该彼此相似,而属于不同组的样本应该足够不相似。
常用聚类方法:系统聚类法,K-均值法,模糊聚类法,有序样品的聚类,分解法,加入法。
注意事项:
1. 系统聚类法可对变量或者记录进行分类,K-均值法只能对记录进行分类;
2. K-均值法要求分析人员事先知道样品分为多少类;
3. 对变量的多元正态性,方差齐性等要求较高。
应用领域:细分市场,消费行为划分,设计抽样方案等
优点:聚类分析模型的优点就是直观,结论形式简明。
缺点:在样本量较大时,要获得聚类结论有一定困难。由于相似系数是根据被试的反映来建立反映珐试间内在联系的指标,而实践中有时尽管从被试反映所得出的数据中发现他们之间有紧密的关系,但事物之间却无任何内在联系,此时,如果根据距离或相似系数得出聚类分析的结果,显然是不适当的,但是,聚类分析模型本身却无法识别这类错误。

问题四:聚类分析的结果分成几类,但是这几类有什么关系呢,这几类有什么含义。 5分 这个要看你是面对什么问题了,如:用聚类做财务舞弊,则会有以下几类:正常财务报表、虚增利润舞弊财务报表、关联交易财务舞弊报表等

问题五:SPSS新手求问聚类分析 聚类分析主要作用是把一些数据分成未知的几类这样理解对吗? 系统聚类的 建议买本spss的教程,可以更加系统的学习。要是写论文的话, 可以帮忙数据 he 分析。

问题六:主成分分析法和聚类分析法的区别

问题七:如何评价spss系统聚类分析结果? 用方差分析来判定聚类结果好坏,类与类之间是否差异性显著,呵呵~~

问题八:聚类分析主要解决什么类型的实际问题 主要解决实现不知道类别标签的样本集的分类问题.聚类其实也是实现分类的功能.聚类和分类的区别:分类是用知道类别标签的样本集去训练一个分类器,然后用该分类器对其他未知类别的样本进行归类,由于训练分类器用到了知道类别的样本,所以属于有导师学习;聚类是完全不知道各个样本的类别,按照一定的聚类度量准则直接进行聚类,所以属于无导师的学习.
聚类可以用在图像处理,模式识别,客户信息分析,金融分析,医学等很多领域.用模糊聚类进行图像分割就是一个非常典型的应

聚类分析(Cluster Analysis)

聚类,将相似的事物聚集在一起,将不相似的事物划分到不同的类别的过程。是将复杂数据简化为少数类别的一种手段。
设有m个样本单位,每个样本测的n项指标(变量),原始资料矩阵:
指标的选择非常重要: 必要性要求:和聚类分析的目的密切相关,并不是越多越好 代表性要求:反映要分类变量的特征 区分度要求:在不同研究对象类别上的值有明显的差异 独立性要求:变量之间不能高度相关(儿童生长身高和体重非常相关) 散布性要求:最好在值域范围内分布不太集中
在各种标准量度值scale差异过大时,或数据不符合正态分布时,可能需要进行数据标准化。 (1) 总和标准化 。 分别求出各聚类指标所对应的数据的总和, 以各指标的数据除以该指标的数据的总和。

根据聚类对象的不同,分为Q型聚类,R型聚类
(1)常见距离统计量 - 闵可夫斯基距离系列(线性距离)

p=2,时为欧氏距离(n维空间中的几何距离) p=∞,时为切比雪夫距离(棋盘格距离)
(2)常见距离统计量 - 马氏距离(协方差距离) 均值为μ,协方差矩阵为∑的向量x=(1,2,...n) 相比于欧式距离,马氏距离考虑到各种指标之间的联系(如身高和体重并不独立,)且马氏距离具有尺度无关性(scale-invariant),因此可不必做标准化。 如果协方差矩阵为单位矩阵(各指标之间完全相互独立),则马氏距离化为欧几里得距离。 如果协方差矩阵为对角矩阵,则马氏距离化为正规化的欧几里得距离(normalized Euclidean distance)
(3)常见距离统计量 - 文本距离 文本距离通常用来度量文本之间的相似度,在生物研究中常见于序列比对分析。
常见相似系数统计量 相似系数= 1,表明完全相似 相似系数= -1 表明完全相反 相似系数 = 0 表明完全独立 相关系数:

类与类之间 距离的度量方法: 系统聚类法不仅需要度量个体与个体之间的距离,还要度量类与类之间的距离。类间距离被度量出来之后,距离最小的两个小类将首先被合并成为一类。 由类间距离定义的不同产生了不同的系统聚类法。
目前有1000多种聚类算法:没有一种聚类算法可以包打天下,聚类算法中的各种参数也必须依据具体问题而调节 常见聚类算法的分类: 1,层次聚类(Hierarchical clustering) 2,划分聚类(Partitioning clustering) 3,密度聚类(Density-based) 4,期望最大化聚类(Expectation Maximization) 5,网格聚类(Grid-based) 6,模型聚类(Model-based)
1. 层次聚类的方法 基本思想: 在聚类分析的开始,每个样本(或变量)自成一类; 然后,按照某种方法度量所有样本(或变量)之间的亲疏程度,并把最相似的样本(或变量)首先聚成一小类; 接下来,度量剩余的样本(或变量)和小类间的亲疏程度,并将当前最接近的样本(或变量)与小类聚成一类;如此反复,知道所有样本聚成一类为止。 举例: 有一组数据D={a,b,c,d,e} 给了它们之间的距离矩阵。 首先,每一个例子都是一个类:

2. 划分聚类的方法 划分聚类算法: 给定一个包含n个样本的数据集,基于划分的方法(Partitioning Method)就是将n个样本按照特定的度量划分为k个簇(k≤n),使得每个簇至少包含一个对象,并且每个对象属于且仅属于一个簇,而且簇之间不存在层次关系。
基于划分的方法大多数是基于距离来划分的,首先对样本进行初始化分,然后计算样本间的距离,重新对数据集中的样本进行划分,将样本划分到距离更近的簇中,得到一个新的样本划分,迭代计算直到聚类结果满足用户指定的要求。
要想得到最优的聚类结果,算法需要穷举数据集所有可能的划分情况,但是在实际应用中数据量都比较大,利用穷举方法聚类显然是不现实的,因此大部分基于划分的聚类方法采用贪心策略,即在每一次划分过程中寻求最优解,然后基于最优解进行迭代计算,逐步提高聚类结果的质量。虽然这种方式有可能得到局部最优结果,但是结合效率方面考虑,也是可以接受的。
算法:
举例: 有一个二维空间的一些点,我们要将它们分成3个类,即K=3。
我们首先随机选择3个初始质心,每一个质心为一类:
然后我们计算每一个不是质心的点到这三个质心的距离:
将这些点归类于距离最近的那个质心的一类:
重新计算这三个分类的质心:
不断重复上述两步,更新三个类:
当稳定以后,迭代停止,这时候的三个类就是我们得到的最后的三个:
最著名的是k-means聚类算法和K-medoids算法(中心点聚类)

处理“大海中的若干孤岛”,以密度来区分岛
大部分基于密度的方法(Density-based Method)采用距离度量来对数据集进行划分,在球状的数据集中能够正确划分,但是在非球状的数据集中则无法对样本进行正确聚类,并且受到数据集中的噪声数据影响较大。基于密度的方法可以克服这两个弱点。
基于密度的方法提出“密度”的思想,即给定邻域中样本点的数量,当邻域中密度达到或超过密度阈值时,将邻域内的样本包含到当前的簇中。若邻域的密度不满足阈值要求,则当前的簇划分完成,对下一个簇进行划分。基于密度的方法可以对数据集中的离群点进行检测和过滤。
算法 :
基于网格的方法(Grid-based Method)将数据集空间划分为有限个网格单元,形成一个网络结构,在后续的聚类过程中,以网格单元为基本单位进行聚类,而不是以样本为单位。由于算法处理时间与样本数量无关,只与网格单元数量有关,因此这种方法在处理大数据集时效率很高。基于网格的方法可以在网格单元划分的基础上,与基于密度的方法、基于层次的方法等结合使用。
基于模型的方法(Model-based Method)假定数据集满足一定的分布模型,找到这样的分布模型,就可以对数据集进行聚类。基于模型的方法主要包括基于统计和基于神经网络两大类,前者以高斯混合模型(Gaussian Mixture Models,GMM)为代表,后者以自组织映射网络(Self Organizing Map,SOM)为代表。目前以基于统计模型的方法为主。
以下内容后续补充:
数据示例:
数据示例:
为了有效利用聚类算法, 首先需要度量观测值见的距离,在R中常通过stats包里的dist函数来实现: dist(x, method = "euclidean", diag = FALSE, upper = FALSE, p = 2) dist 函数计算对象(矩阵或数据框)中两两间的距离,返回的是距离矩阵(dist类对象)。dist函数的参数描述如下。
另一个计算点之间的距离的方法是cluster包里面的daisy函数:
daisy函数计算数据集中每对观测值的不相似度。daisy函数的参数描述如下:
k-means聚类是最简单的聚类算法之一。R中可以通过stats包里面的kmeans函数实现k-means聚类: kmeans(x, centers, iter.max = 10, nstart = 1, algorithm = c("Hartigan-Wong", "Lloyd", "Forgy", "MacQueen"), trace=FALSE) kmeans函数的参数描述如下:

聚类分析(cluster analysis)

我们这里来看看聚类分析。

比较流行的有聚类方法有k均值聚类,属于分割式聚类的方法。

K-Means算法的思想很简单,对于给定的样本集,按照样本之间的距离大小,将样本集划分为K个簇。让簇内的点尽量紧密的连在一起,而让簇间的距离尽量的大。目的是最小化E=sum(x-\miu_i), 其中\miu_i是每个簇的均值。

直接求上式的最小值并不容易,这是一个NP难的问题,因此采用启发式的迭代方法K-Means。

K-Means很简单,用下面一组图就可以形象的描述。上图a表达了初始的数据集,假设k=3。在图b中,我们随机选择了三个k类所对应的类别质心,即图中的红绿和草绿色质心,然后分别求样本中所有点到这三个质心的距离,并标记每个样本的类别为和该样本距离最小的质心的类别,如图c所示,经过计算样本和红绿和草绿色质心的距离,我们得到了所有样本点的第一轮迭代后的类别。此时我们对我们当前标记为红绿和草绿色点分别求其新的质心,重复了这个过程,将所有点的类别标记为距离最近的质心的类别并求新的质心。最终我们得到的三个类别如图。

首先我们看看K-Means算法的一些要点。

1 对于K-Means算法,首先要注意的是k值的选择,一般来说,我们会根据对数据的先验经验选择一个合适的k值,如果没有什么先验知识,则可以通过交叉验证选择一个合适的k值。

2 在确定了k的个数后,我们需要选择k个初始化的质心,就像上图b中的随机质心。由于我们是启发式方法,k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心,最好这些质心不能太近。

传统的K-Means算法流程。

输入样本集合,然后划分成k 人为分类,凭经验将样品进行初步的分类

选择凝聚点后,求均值,求距离,归类

更新质心

重新求均值和距离,再重新归类

? 大样本优化Mini Batch K-Means

在统的K-Means算法中,要计算所有的样本点到所有的质心的距离。如果样本量非常大,比如达到10万以上,特征有100以上,此时用传统的K-Means算法非常的耗时,就算加上elkan K-Means优化也依旧。在大数据时代,这样的场景越来越多。此时Mini Batch K-Means应运而生。

顾名思义,Mini Batch,也就是用样本集中的一部分的样本来做传统的K-Means,这样可以避免样本量太大时的计算难题,算法收敛速度大大加快。当然此时的代价就是我们的聚类的精确度也会有一些降低。一般来说这个降低的幅度在可以接受的范围之内。

在Mini Batch K-Means中,我们会选择一个合适的批样本大小batch size,我们仅仅用batch size个样本来做K-Means聚类。那么这batch size个样本怎么来的?一般是通过无放回的随机采样得到的。

为了增加算法的准确性,我们一般会多跑几次Mini Batch K-Means算法,用得到不同的随机采样集来得到聚类簇,选择其中最优的聚类簇。

K-Means与KNN

K-Means是无监督学习的聚类算法,没有样本输出;而KNN是监督学习的分类算法,有对应的类别输出。KNN基本不需要训练,对测试集里面的点,只需要找到在训练集中最近的k个点,用这最近的k个点的类别来决定测试点的类别。而K-Means则有明显的训练过程,找到k个类别的最佳质心,从而决定样本的簇类别。

两者也有一些相似点,两个算法都包含一个过程,即找出和某一个点最近的点。两者都利用了最近邻(nearest neighbors)的思想。

KNN(K-NearestNeighbor)分类算法是数据挖掘分类技术中最简单的方法之一。所谓K最近邻,就是K个最近的邻居的意思,说的是每个样本都可以用它最接近的K个邻近值来代表。近邻算法就是将数据集合中每一个记录进行分类的方法。

总体来说,KNN分类算法包括以下4个步骤:?

1准备数据,对数据进行预处理?

2计算测试样本点(也就是待分类点)到其他每个样本点的距离?

3对每个距离进行排序,然后选择出距离最小的K个点?

4对K个点所属的类别进行比较,根据少数服从多数的原则,将测试样本点归入在K个点中占比最高的那一类

该算法在分类时有个主要的不足是,当样本不平衡时,如一个类的样本容量很大,而其他类样本容量很小时,有可能导致当输入一个新样本时,该样本的K个邻居中大容量类的样本占多数 , 该方法的另一个不足之处是计算量较大,因为对每一个待分类的文本都要计算它到全体已知样本的距离,才能求得它的K个最近邻点?。

K-Means小结

K-Means的主要优点有:

阅读更多 >>>  数学是一门怎样的学科

1)原理比较简单,实现也是很容易,收敛速度快。

2)聚类效果较优。

3)算法的可解释度比较强。

4)主要需要调参的参数仅仅是簇数k。

K-Means的主要缺点有:

1)K值的选取不好把握

2)对于不是凸的数据集比较难收敛

3)如果各隐含类别的数据不平衡,比如各隐含类别的数据量严重失衡,或者各隐含类别的方差不同,则聚类效果不佳。

4) 采用迭代方法,得到的结果只是局部最优。

5) 对噪音和异常点比较的敏感。

PAM算法。 PAM法和K-means法很相似,但是它保证跑出来你的数据是最优的,和k-means不一样的是,虽然它也随机选择群中心,但是群中心的选择并非虚拟的,而是选取真正的数据点作为群中心。比如一开始选择3和20两个点作为群中心,并得到SS值。然后用不同的点去替换3或者20,选择最小SS值的点作为新的群中心,依次类推,直到SS值不能进一步优化。然后根据最后的群中心去聚类。PAM算法能够处理非数值类型的字段,但是其效率很慢,难以处理大数据量的情况。

除了分割聚类的方法,还有阶层式聚类的方法。我们看看ward方法。

华德法( Ward’s Method ):? 华德法是阶层式聚类分析法中效果最好的,但是其运算速度较慢。理论差平方是判断聚类效果好不好的一个指标(每个资料点同群中心距离的平方和),其计算方式如下,SS值最小则说明聚类效果最好。华德法采用了一个取巧的方法,保证效果最好,仍然以上述例子示范。第一次聚类(聚成4类)有十种可能性,选择AB使得SS值最小,第二次(聚成3类)选择DE使得SS最小,第三次(聚成2类)选择CDE使得SS最小,直到聚成一类。

聚类分析是非常有用的,比如在公司可以给客户分类,或者说客户画像。如何了解用户的需求,把握用户的期望,对迅速对用户作出精准的投放这些手段已经成为企业能否的关键了。

某移动运营商在5月发展了19999个新用户,在新用户入网后一个月后,1、希望通过提供一些优惠提高用户的忠诚度? 2、希望通过推荐一些产品提升客单价。

为达到这一目的,我们需要对新用户进行洞察,弄清楚以下的问题: a、应该给客户提供什么优惠? 我们的优惠能否给客户带来惊喜?不同的客户是否该根据他们的喜好提供不同的优惠?b、客户对我们的什么产品感兴趣?不同的客户是否应该推荐不同的产品?

这个时候就可以使用聚类分析。

聚类分析的假设条件

聚类分析的假设条件是数据间存在相似性。
聚类分析(cluster analysis)是常见的数据挖掘手段,其主要假设是数据间存在相似性。而相似性是有价值的,因此可以被用于探索数据中的特性以产生价值。
常见应用包括:
1、用户分割:将用户划分到不同的组别中,并根据簇的特性而推送不同的。
2、广告欺诈检测:发现正常与异常的用户数据,识别其中的欺诈行为。
聚类分析是一种无监督学习,是在缺乏标签的前提下的一种分类模型。当对数据进行聚类后并得到簇后,一般会单独对每个簇进行深入分析,从而得到更加细致的结果。考虑变量的内在变化度与变量间的关联性:一个变量本身方差很小,那么不易对聚类起到很大的影响。如果变量间的相关性很高,那么高相关性间的变量应该被合并处理。
直接采用算法来对变量重要性进行排序。另一个鸡生蛋蛋生鸡的问题是,如果我用算法找到了重要特征,那么仅用重要特征建模可以吗?这个依然不好说,我觉得最需要去除的是高相关性的变量,因为很多聚类算法无法识别高相关性,会重复计算高相关性特征,并夸大了其影响,比如K均值。

关于聚类分析

1。聚类分析的特点
 聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类。它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大。这种方法有三个特征:适用于没有先验知识的分类。如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观。这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类。例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术。
  这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考。其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本。
2.应用范围
 聚类分析在客户细分中的应用
  
  消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的。常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法。聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程。
  例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定。要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类。在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等。除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考。
  以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现。
  
  聚类分析在实验市场选择中的应用
  
  实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试。通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广。
  实验调查法最常用的领域有:市场饱和度测试。市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标。企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度。或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力。前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验。这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验。波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡。然而新产品投放市场后的失败率却很高,大致为66%到90%。因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的。
  在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验。这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同。
  通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性。聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量。 转
http://baike.baidu.com/view/903740.htm

聚类分析方法应用于哪些问题的研究

1.聚类分析的特点
 聚类分析(cluster analysis)是根据事物本身的特性研究个体的一种方法,目的在于将相似的事物归类.它的原则是同一类中的个体有较大的相似性,不同类的个体差异性很大.这种方法有三个特征:适用于没有先验知识的分类.如果没有这些事先的经验或一些国际、国内、行业标准,分类便会显得随意和主观.这时只要设定比较完善的分类变量,就可以通过聚类分析法得到较为科学合理的类别;可以处理多个变量决定的分类.例如,要根据消费者购买量的大小进行分类比较容易,但如果在进行数据挖掘时,要求根据消费者的购买量、家庭收入、家庭支出、年龄等多个指标进行分类通常比较复杂,而聚类分析法可以解决这类问题;聚类分析法是一种探索性分析方法,能够分析事物的内在特点和规律,并根据相似性原则对事物进行分组,是数据挖掘中常用的一种技术.
  这种较成熟的统计学方法如果在市场分析中得到恰当的应用,必将改善市场营销的效果,为企业决策提供有益的参考.其应用的步骤为:将市场分析中的问题转化为聚类分析可以解决的问题,利用相关软件(如SPSS、SAS等)求得结果,由专家解读结果,并转换为实际操作措施,从而提高企业利润,降低企业成本.
2.应用范围
 聚类分析在客户细分中的应用
  
  消费同一种类的商品或服务时,不同的客户有不同的消费特点,通过研究这些特点,企业可以制定出不同的营销组合,从而获取最大的消费者剩余,这就是客户细分的主要目的.常用的客户分类方法主要有三类:经验描述法,由决策者根据经验对客户进行类别划分;传统统计法,根据客户属性特征的简单统计来划分客户类别;非传统统计方法,即基于人工智能技术的非数值方法.聚类分析法兼有后两类方法的特点,能够有效完成客户细分的过程.
  例如,客户的购买动机一般由需要、认知、学习等内因和文化、社会、家庭、小群体、参考群体等外因共同决定.要按购买动机的不同来划分客户时,可以把前述因素作为分析变量,并将所有目标客户每一个分析变量的指标值量化出来,再运用聚类分析法进行分类.在指标值量化时如果遇到一些定性的指标值,可以用一些定性数据定量化的方法加以转化,如模糊评价法等.除此之外,可以将客户满意度水平和重复购买机会大小作为属性进行分类;还可以在区分客户之间差异性的问题上纳入一套新的分类法,将客户的差异性变量划分为五类:产品利益、客户之间的相互作用力、选择障碍、议价能力和收益率,依据这些分析变量聚类得到的归类,可以为企业制定营销决策提供有益参考.
  以上分析的共同点在于都是依据多个变量进行分类,这正好符合聚类分析法解决问题的特点;不同点在于从不同的角度寻求分析变量,为某一方面的决策提供参考,这正是聚类分析法在客户细分问题中运用范围广的体现.
  
  聚类分析在实验市场选择中的应用
  
  实验调查法是市场调查中一种有效的一手资料收集方法,主要用于市场销售实验,即所谓的市场测试.通过小规模的实验性改变,以观察客户对产品或服务的反应,从而分析该改变是否值得在大范围内推广.
  实验调查法最常用的领域有:市场饱和度测试.市场饱和度反映市场的潜在购买力,是市场营销战略和策略决策的重要参考指标.企业通常通过将消费者购买产品或服务的各种决定因素(如价格等)降到最低限度的方法来测试市场饱和度.或者在出现滞销时,企业投放类似的新产品或服务到特定的市场,以测试市场是否真正达到饱和,是否具有潜在的购买力.前述两种措施由于利益和风险的原因,不可能在企业覆盖的所有市场中实施,只能选择合适的实验市场和对照市场加以测试,得到近似的市场饱和度;产品的价格实验.这种实验往往将新定价的产品投放市场,对顾客的态度和反应进行测试,了解顾客对这种价格的是否接受或接受程度;新产品上市实验.波士顿矩阵研究的企业产品生命周期图表明,企业为了生存和发展往往要不断开发新产品,并使之向明星产品和金牛产品顺利过渡.然而新产品投放市场后的失败率却很高,大致为66%到90%.因而为了降低新产品的失败率,在产品大规模上市前,运用实验调查法对新产品的各方面(外观设计、性能、广告和推广营销组合等)进行实验是非常有必要的.
  在实验调查方法中,最常用的是前后单组对比实验、对照组对比实验和前后对照组对比实验.这些方法要求科学的选择实验和非实验单位,即随机选择出的实验单位和非实验单位之间必须具备一定的可比性,两类单位的主客观条件应基本相同.
  通过聚类分析,可将待选的实验市场(商场、居民区、城市等)分成同质的几类小组,在同一组内选择实验单位和非实验单位,这样便保证了这两个单位之间具有了一定的可比性.聚类时,商店的规模、类型、设备状况、所处的地段、管理水平等就是聚类的分析变量

ArcGIS聚类分析

01

概述

聚类分析,Cluster analysis,亦称为群集分析,是对于统计数据分析的一门技术,在许多领域受到广泛应用,包括机器学习,数据挖掘,模式识别,图像分析以及生物信息。聚类是把相似的对象通过静态分类的方法分成不同的组别或者更多的子集(subset),这样让在同一个子集中的成员对象都有相似的一些属性,常见的包括在坐标系中更加短的空间距离等。在我们进行区域的分类时,有时会用到SPSS的聚类分析,然而在ArcGIS中,我们也可以直接进行聚类分析。

02

实例

那我们以粤港澳大湾区为例,属性表里有收集的截至2018年的各地区GDP、人口、人均GDP,数据来自香港贸发局(https://research.hktdc.com/sc/article/MzYzMDE5NzQ5):

如果我们想要以GDP为例将粤港澳大湾区分为三类,需要调出分组分析工具,在空间统计工具里(Spatial Statistics Tools)的聚类分布制图中的分组分析中(在不同的ArcGIS版本中处于不同的位置,此例为10.6版本):

输入要素选择大湾区图层,唯一ID字段需要新建一个整型字段,长整型或者短整型都可以,赋予其不同的值,一般来说从1往后排序即可,组数选择3,分析字段选择人均GDP,空间约束条件选择no_spatial_constraint,意为只使用数据对要素分组,不需要要素之间有地理上的限制条件,初始化方法选择find_seed_locations,然后点击确定即可:

03

结果

那么我们可以看到,香港、澳门被单独分为一类,广州市、深圳市、佛山市、珠海市被分为一类,肇庆市、江门市、东莞市、中山市、惠州市被分为一类,这是比较符合我们认知的:

04

小结

当然,我们也可以根据要求多选择一些字段一起进行聚类分析,只需要在分析字段中多勾选即可。

END -

深入浅出介绍聚类分析

聚类分析是生信分析中常用的工具,在转录组分析中经常用到。聚类分析将表达模式相似的基因聚类在一起,以基因集的形式进行后续分析,今天我给大家介绍其相关原理。
聚类方法有很多,常用的有以下几个:
下图的例子展示的是,差异表达基因集的聚类热图。
多是基于R语言heatmap.2函数绘制(gplots程序包),该函数默认使用的聚类方法是计算欧式距离(Euclidean Distance)进行层次聚类(Hierarchical Cluster)。
这个图的是什么意思呢?我们来解释一下。
首先,我们先明确下什么是欧式距离(Euclidean Distance):
欧式距离,也称欧几里得距离,是衡量多维空间的两个点之间的绝对距离,
(1) 二维平面,两点a(x1,y1),b(x2,y2) 欧式距离的计算公式为:
(2) 三维空间,欧式距离的计算公式为:
(3) n维空间,欧式距离的计算公式为:
那么,体现在基因表达量的矩阵上,则如下:
(1) 首行为样本名; (2) 首列为基因名; (3) 数字则为基因在相应样本中的表达量(一般使用标准化后的表达量矩阵)
Gene1与Gene2的欧式距离为:
Gene1与Gene3的欧式距离为:
Gene1与Gene4的欧式距离为:
计算出所有基因两两之间的欧式距离之后,就可以进行聚类啦:
Cluster之间的聚类,则有3种方法:
R语言中hclust函数的默认方法为最长距离法(complete-linkage)。
以上的聚类过程即称之为 层级聚类 。
层级聚类一般伴随着 系统聚类图 ,系统聚类图分支的长短也体现Cluster形成的早晚,分支越短,形成的越早,基因表达模式也越相近。
聚类分析将基因划分为不同的基因集合,用于反映不同实验条件下样品差异表达基因的变化模式。
功能相关的基因在相同条件下通常具有相似的表达模式,例如被共同的转录因子调控的基因,或其产物构成同一个蛋白复合体的基因,或参与相同生物学过程的基因。对这些基因集进行分析往往可以获得比单基因分析更为可靠的结果。

回归分析中加入cluster,聚类对象是根据解释变量来确定吗

如下;1、与多元分析的其他方法相比,聚类分析是很粗糙的,理论尚不完善,但由于它成功地应用于心理、经济、社会、管理、医学、地质、生态、地震、气象、考古、企业决策等,因此成了多元分析的重要方法,统计包中都有丰富的软件,对数据进行聚类处理。2、聚类分析除了独立的统计功能外,还有一个辅助功能,就是和其他统计方法配合,对数据进行预处理。例如,当总体不清楚时,可对原始数据进行聚类,根据聚类后相似的数据,各自建立回归分析,分析的效果会更好。同时如果聚类不是根据个案,而是对变量先进行聚类,聚类的结果,可以在每一类推出一个最有代表性的变量,从而减少了进入回归方程的变量数。3、聚类分析是研究按一定特征,对研究对象进行分类的多元统计方法,它并不关心特征及变量间的因果关系。分类的结果,应使类别间个体差异大,而同类的个体差异相对要小。

网站数据信息

"cluster聚类分析,聚类分析方法应用于哪些问题的研究"浏览人数已经达到21次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:cluster聚类分析,聚类分析方法应用于哪些问题的研究的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!