百度
360搜索
搜狗搜索

求原码反码补码,十六进制数的原码补码反码怎么表示详细介绍

本文目录一览: 原码补码反码怎么计算

原码补码反码怎么计算
一、正整数的原码、反码、补码完全一样,即符号位固定为0,数值位相同。
二、负整数的符号位固定为1,由原码变为补码时,规则如下:
1、原码符号位1不变,整数的每一位二进制数位求反,得到反码。
2、反码符号位1不变,反码数值位最低位加1,得到补码。
方法:
(1)正整数的原码,反码和补码计算。【符号位为0,原码=反码=补码】
(2)负整数的原码,反码和补码计算,先求原码,再求反码,最后求补码。
(3)根据补码求真值,一般使用图中的公式计算,正整数符号为+,负整数符号为-,通常完成补码求真后,可以按步骤1、2简单的逆推一下,看结果是否正确。
扩展资料:补码的表示方法:
模的概念:把一个计量单位称之为模或模数。例如,时钟是以12 进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。
从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的。
因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为?补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位 二进制数,它的模数为2^8=256。在计算中,两个互补的数称为“补码”。

原码反码补码怎么算

原码反码补码计算方法如下:
一、原码
1:字长为8 , 符号位(首位)为0 表示正数 ; 符号位(首位)为1 表示负数。
2:0000 0001 表示 正1 ; 1000 0001 表示负1。
二、反码
1:正数,反码和原码一样。正1的原码和反码为0000 0001。
2:负数,符号位不变,其他位取反。负1的反码为:1111 1110。
三、补码
1:正数,补码和原码一样。正1的补码为 0000 0001。
2:负数,补码为反码加1,负1的补码为 1111 1111。
3:计算机在计算的时候是用补码在计算。
四、移码
1:补码的符号位取反 正1的移码为 1000 0001 ; 负1的移码为 0111 1111。
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统。
数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。
其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。

计算机原码反码补码怎样计算

计算机中,只有补码,没有原码和反码。
数字,在计算机中,一律用补码表示。
数字与补码的关系,可见下表:
换算公式,很简单的,一看便知。
原码反码取反加一,实际上,都没有什么用处。
老外数学不好,才不得不用这么麻烦的做法。
计算机原码反码补码计算方法:
1、原码
原码就是符号位加上真值的绝对值,即用第一位表示符号,其余位表示值。比如如果是8位二进制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:[1111 1111 , 0111 1111]
即[-127 , 127]
原码是人脑最容易理解和计算的表示方式。
2、反码
反码的表示方法是:正数的反码是其本身。负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
可见如果一个反码表示的是负数,人脑无法直观地看出来它的数值。通常要将其转换成原码再计算。
3、补码
补码的表示方法是:正数的补码就是其本身。负数的补码是在其原码的基础上,符号位不变,其余各位取反,最后+1。(即在反码的基础上+1)。
[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补
对于负数,补码表示方式也是人脑无法直观看出其数值的。通常也需要转换成原码在计算其数值。
扩展资料:
原码,反码和补码是完全不同的。既然原码才是被人脑直接识别并用于计算表示方式,为何还会有反码和补码呢?
首先,因为人脑可以知道第一位是符号位,在计算的时候我们会根据符号位,选择对真值区域的加减。但是对于计算机,加减乘数已经是最基础的运算,要设计的尽量简单。计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂。于是人们想出了将符号位也参与运算的方法。我们知道,根据运算法则减去一个正数等于加上一个负数,即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法,这样计算机运算的设计就更简单了。
于是人们开始探索将符号位参与运算,并且只保留加法的方法。

原码反码补码计算公式及关系

原码反码补码计算公式及关系如下:
原码:二进制数的最高位表示符号位,0表示正数,1表示负数,其余位表示数值大小。
反码:正数的反码与原码相同,负数的反码是对其原码除符号位外的各位取反。
补码:正数的补码与原码相同,负数的补码是对其反码加1。
计算公式:
关系:
原码、反码、补码之间的转换关系是固定的,可以通过公式进行转换。
在计算机中,通常使用补码表示有符号整数,因为补码可以简化加减法的实现。
在进行加减法运算时,可以将两个数的补码相加,再将结果的补码转换为原码,即可得到正确的结果。
原码转反码:负数的反码是对其原码除符号位外的各位取反。
反码转原码:负数的原码是对其反码除符号位外的各位取反。
反码转补码:负数的补码是对其反码加1。
补码转反码:负数的反码是对其补码减1。
补码转原码:负数的原码是对其补码减1,再对其除符号位外的各位取反。
在进行位运算时,原码、反码、补码的结果是相同的,因为位运算只涉及数值大小,不涉及符号位。
在计算机中,通常使用补码表示有符号整数,因为补码可以避免出现两个0的情况,即+0和-0,同时也可以避免出现溢出的情况。
在进行乘法运算时,需要将两个数的补码相乘,再将结果的补码转换为原码,即可得到正确的结果。
总之,原码、反码、补码是计算机中表示有符号整数的三种方式,它们之间有固定的转换关系,可以根据需要进行相互转换。在实际应用中,通常使用补码表示有符号整数,因为补码可以简化加减法的实现,避免出现两个0的情况,同时也可以避免出现溢出的情况。

一个数的原码,反码,补码怎么算

补码的运算:听老师讲解真值、原码、反码和补码
在计算机系统中,数值,一律采用补码表示和存储。
在计算机中,负数以其“正值的补码形式”表达。
这就是说:补码,就是一个“代替负数”的正数。
使用了补码,计算机中就没有负数了,也就没有减法了。
那么,计算机只需要一个加法器,就可以走遍天下了。
简化计算机的硬件,这就是:使用补码的目的。
-----------------------
补码(也就是正数),怎么就能代表负数呢?
其实,道理也很简单,就是“计数系统的周期性”所致。
你看 2 位 10 进制数吧:
  25 - 1 = 24
  25 + 99 = (一百) 24
进位是 10^2 = 100,这也是 2 位数的计数周期。
这个进位,显然不在 2 位数之中。
如果你只取 2 位数时,+99 和-1 的作用,就是相同的。
就是说,只要舍弃了进位,正数,就可以代替负数。
这个正数,就是“负数的补数”。
求补数的公式: 补数 = 负数 + 周期。
-----------------------
在三角函数中,大家都知道:
  -π/2 和 +3π/2,这两个角度,功能也是相同的。
负角度,和正角度,要怎么变换呢? 
也是用同样的公式: 正角度 = 负角度 + 周期(2π)。
-----------------------
这个公式,在计算机中,也可以使用。
计算机大佬为了标新立异,就把“补数”改称为“补码”。
8 位 2 进制是:0000 0000~1111 1111 (十进制 255)。
其计数周期是:2^8 = 256。
此时,-1 就可以用 255 (1111 1111) 代替。
同理,-2 的补码就是 254 (1111 1110)。
。。。
正数,本身就是正数,必须直接参加运算,不许再作任何变换。
所以,正数,根本就没有补数(补码)。
由此,就可总结出补码定义式(书上都有的):
 当 X >= 0, [ X ]补 = X;     零和正数不用变换。
 当 X < 0,  [ X ]补 = X + 2^n。 n 是补码的位数。
使用定义式求补码,才是“求补码的正规做法”。
-----------------------
示例,5 - 7 = -2,用补码计算如下:
     5  = 0000 0101
 -7 的补码 = 1111 1001
--相加-----------
   得: (1) 1111 1110 = -2 的补码
舍弃进位,只取 8 位,结果就是正确的。
这就说明了,借助于补码,就可以用加法,实现减法运算。
原码和反码,都没有这种功能。
所以,在计算机中,根本就不使用原码和反码。
原码和反码,到底有什么用呢?
它们被计算机老师,当做难为学生的工具了。

原码反码补码计算口诀

一:原码,反码,补码与加减乘除运算
1:原码,反码与补码
正数的原码,反码,补码都一至.负数原码为绝对值二进制最高位取1, 负数的反码是原码(符号位除外)按位取反, 负数补码是反码+1如9的原码,反码,补码都是 00000000 00000000 00000000 00001001-9 原码 10000000 00000000 00000000 00001001-9的反码 11111111 11111111 11111111 11110110-9的补码 11111111 11111111 11111111 11110111
2:加法运算(与十进制类似例如6+9)
6的二进制 00000000 00000000 00000000 000001109的二进制 00000000 00000000 00000000 00001001相加结果 00000000 00000000 00000000 00001111 转成十进制就是15
3:减法运算,减法其实就是将减的数转成负数取补码相加,例如6-9
正6的二进制 00000000 00000000 00000000 00000110-9的二进制(补码) 11111111 11111111 11111111 11110111相加结果 11111111 11111111 11111111 11111101 // 这个数就是-3的二进制减1成反码 11111111...11111100 取反 10000000 ... 00000011 就是-3的原码喽
4:乘法运算(通过左移化解成加法运算)
十进制中例如140 * 121 = 140 *(1 * 10^0 +2 * 10^1+1 * 10^2) = 140+2800+14000 = 16940,二进制也是一样,算9 * 6, 6的二进制110, 即 9 * (0 * 2^0 + 1 * 2^1 + 1 * 2^2)位数为0的都等于0,分解出来就是 0 + (9 <<1) + (9<<2)9的二进制1001 上面分解就等于 0+10010+100100 = 110110 十进制就是54
5:除法(与十进制除法相似从高往低)
如73 / 5 , 73二进制1001001 , 5二进制101从第一位 1 < 101 结果为0, 余1到第二位1 0 <101结果为0,余10到第三位 10 0 < 101 结果为0余100到第四位 100 1 > 101 结果为1, 余为1001-101 = 100,到第五位 100 0 > 101结果为1 余为1000 -101 = 11到第六位11 0 > 101 结果为1 余为110 -101 = 1到第七位 1 1 < 101 结果为0 余为 11合起来结果就是 0001110 ,余为11 转十进制就是14余3
二:常用位运算技巧
1:左移 << 与 右移>>
左移<

阅读更多 >>>  补码运算的结果是正数时得到的就是真值,补码运算的结果是正数时得到的结果是什么?

>各二进位全部右移若干位,对无符号数,高位补0, 有符号时会补上符号位,在JAVA中若无符号右移为>>>,符号位补0左移n位即二进制右边补了n个0, 相当乘于2^n, 右移n位相当除2^n, 最常见 除2的操作 num >> 1 , 取颜色值例如求int最小值,最大值

例如颠倒二进制位 00000000 00000000 10000000 10001110 变成01110001 00000001 00000000 00000000

2:~ 取反 0变1, 1变0

如上求最大值最小值,最大值取反即为最小值,最小值取反即为最大值10000000 最小值 取反 01111111即为最大值

3:&与运算 两个都为1时结果为1

十六进制数的原码补码反码怎么表示

无论是十进制还是十六进制的数,在求补码时,都先转化为二进制,再进行补码的转换。
例如:
15的十六进制为F,转化为二进制为00001111,再转为反码00001111,最后转化为补码00001111。
正整数的补码是其二进制表示,与原码相同。
扩展资料:
原码(true form)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
补码的特性:
1,一个负整数(或原码)与其补数(或补码)相加,和为模。
2,对一个整数的补码再求补码,等于该整数自身。
3,补码的正零与负零表示方法相同。
参考资料来源:百度百科-补码

原码反码补码概念(原码反码补码)

在计算机系统中,数值,一律采用补码表示和存储。
在计算机中,根本就不使用原码和反码。
在计算机中,原码和反码,也都是不存在的。
那么,你就是算出来原码和反码,也没有地方存放啊!
所以,只要掌握了“数值与补码”的互换,就万事大吉了。
数值,与其八位的补码,对照如下:
互相换算的公式,小学生都能看出来。
你也一定能。
原码反码取反加一符号位不变。。。
老外算术不行,才弄出这些个骚操作。
您好,我就为大家解答关于原码反码补码概念,原码反码补码相信很多小伙伴还不知道,现在让我们一起来看看吧!1、请我给你的详解:原码、补...
您好,我就为大家解答关于原码反码补码概念,原码反码补码相信很多小伙伴还不知道,现在让我们一起来看看吧!
1、请我给你的详解:原码、补码和反码(1)原码表示法 原码表示法是机器数的一种简单的表示法。
2、其符号位用0表示正号,用:表示负号,数值一般用二进制形式表示。
3、设有一数为x,则原码表示可记作〔x〕原。
4、例如,X1= +1010110X2= 一1001010其原码记作:〔X1〕原=[+1010110]原=01010110〔X2〕原=[-1001010]原=11001010原码表示数的范围与二进制位数有关。
5、当用8位二进制来表示小数原码时,其表示范围:最大值为0.1111111,其真值约为(0.99)10最小值为1.1111111,其真值约为(一0.99)10当用8位二进制来表示整数原码时,其表示范围:最大值为01111111,其真值为(127)10最小值为11111111,其真值为(-127)10在原码表示法中,对0有两种表示形式:〔+0〕原=00000000[-0] 原=10000000(2)补码表示法 机器数的补码可由原码得到。
6、如果机器数是正数,则该机器数的补码与原码一样;如果机器数是负数,则该机器数的补码是对它的原码(除符号位外)各位取反,并在未位加1而得到的。
7、设有一数X,则X的补码表示记作〔X〕补。
8、例如,[X1]=+1010110[X2]= 一1001010[X1]原=01010110[X1]补=01010110即 [X1]原=[X1]补=01010110[X2] 原= 11001010[X2] 补=10110101+1=10110110补码表示数的范围与二进制位数有关。
9、当采用8位二进制表示时,小数补码的表示范围:最大为0.1111111,其真值为(0.99)10最小为1.0000000,其真值为(一1)10采用8位二进制表示时,整数补码的表示范围:最大为01111111,其真值为(127)10最小为10000000,其真值为(一128)10在补码表示法中,0只有一种表示形式:[+0]补=00000000[+0]补=11111111+1=00000000(由于受设备字长的限制,最后的进位丢失)所以有[+0]补=[+0]补=00000000(3)反码表示法 机器数的反码可由原码得到。
10、如果机器数是正数,则该机器数的反码与原码一样;如果机器数是负数,则该机器数的反码是对它的原码(符号位除外)各位取反而得到的。
11、设有一数X,则X的反码表示记作〔X〕反。
12、例如:X1= +1010110X2= 一1001010〔X1〕原=01010110[X1]反=〔X1〕原=01010110[X2]原=11001010[X2]反=10110101反码通常作为求补过程的中间形式,即在一个负数的反码的未位上加1,就得到了该负数的补码。
13、例1. 已知[X]原=10011010,求[X]补。
14、分析如下:由[X]原求[X]补的原则是:若机器数为正数,则[X]原=[X]补;若机器数为负数,则该机器数的补码可对它的原码(符号位除外)所有位求反,再在未位加1而得到。
15、现给定的机器数为负数,故有[X]补=[X]原十1,即[X]原=10011010[X]反=11100101十) 1 [X]补=11100110例2. 已知[X]补=11100110,求〔X〕原。
16、分析如下:对于机器数为正数,则〔X〕原=〔X〕补对于机器数为负数,则有〔X〕原=〔〔X〕补〕补现给定的为负数,故有:〔X〕补=11100110〔〔X〕补〕反=10011001十) 1 〔〔X〕补〕补=10011010=〔X〕原 或者说:数在计算机中是以二进制形式表示的。
17、 数分为有符号数和无符号数。
18、 原码、反码、补码都是有符号定点数的表示方法。
19、 一个有符号定点数的最高位为符号位,0是正,1是副。
20、 以下都以8位整数为例, 原码就是这个数本身的二进制形式。
21、 例如0000001 就是+11000001 就是-1 正数的反码和补码都是和原码相同。
22、 负数的反码是将其原码除符号位之外的各位求反 [-3]反=[10000011]反=11111100 负数的补码是将其原码除符号位之外的各位求反之后在末位再加1。
23、 [-3]补=[10000011]补=11111101 一个数和它的补码是可逆的。
24、 为什么要设立补码呢? 第一是为了能让计算机执行减法: [a-b]补=a补+(-b)补 第二个原因是为了统一正0和负0 正零:00000000 负零:10000000 这两个数其实都是0,但他们的原码却有不同的表示。
25、 但是他们的补码是一样的,都是00000000 特别注意,如果+1之后有进位的,要一直往前进位,包括符号位!(这和反码是不同的!) [10000000]补 =[10000000]反+1 =11111111+1 =(1)00000000 =00000000(最高位溢出了,符号位变成了0) 有人会问 10000000这个补码表示的哪个数的补码呢? 其实这是一个规定,这个数表示的是-128 所以n位补码能表示的范围是 -2^(n-1)到2^(n-1)-1 比n位原码能表示的数多一个又例:1011 原码:01011 反码:01011 //正数时,反码=原码 补码:01011 //正数时,补码=原码 -1011 原码:11011 反码:10100 //负数时,反码为原码取反 补码:10101 //负数时,补码为原码取反+1 0.1101 原码:0.1101 反码:0.1101 //正数时,反码=原码 补码:0.1101 //正数时,补码=原码 -0.1101 原码:1.1101 反码:1.0010 //负数时,反码为原码取反 补码:1.0011 //负数时,补码为原码取反+1 在计算机内,定点数有3种表示法:原码、反码和补码所谓原码就是前面所介绍的二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。
26、 反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。
27、补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。
28、假设有一 int 类型的数,值为5,那么,我们知道它在计算机中表示为: 00000000 00000000 00000000 00000101 5转换成二制是101,不过int类型的数占用4字节(32位),所以前面填了一堆0。
29、 现在想知道,-5在计算机中如何表示? 在计算机中,负数以其正值的补码形式表达。
30、 什么叫补码呢?这得从原码,反码说起。
31、 原码:一个整数,按照绝对值大小转换成的二进制数,称为原码。
32、 比如 00000000 00000000 00000000 00000101 是 5的 原码。
33、 反码:将二进制数按位取反,所得的新二进制数称为原二进制数的反码。
34、 取反操作指:原为1,得0;原为0,得1。
35、(1变0; 0变1) 比如:将00000000 00000000 00000000 00000101每一位取反,得11111111 11111111 11111111 11111010。
36、 称:11111111 11111111 11111111 11111010 是 00000000 00000000 00000000 00000101 的反码。
37、 反码是相互的,所以也可称: 11111111 11111111 11111111 11111010 和 00000000 00000000 00000000 00000101 互为反码。
38、 补码:反码加1称为补码。
39、 也就是说,要得到一个数的补码,先得到反码,然后将反码加上1,所得数称为补码。
40、 比如:00000000 00000000 00000000 00000101 的反码是:11111111 11111111 11111111 11111010。
41、 那么,补码为: 11111111 11111111 11111111 11111010 1 = 11111111 11111111 11111111 11111011 所以,-5 在计算机中表达为:11111111 11111111 11111111 11111011。
42、转换为十六进制:0xFFFFFFFB。
43、 再举一例,我们来看整数-1在计算机中如何表示。
44、 假设这也是一个int类型,那么: 先取1的原码:00000000 00000000 00000000 00000001 2、得反码: 11111111 11111111 11111111 11111110 3、得补码: 11111111 11111111 11111111 11111111 正数的原码,补码,反码都相同,都等于它本身 负数的补码是:符号位为1,其余各位求反,末位加1 反码是:符号位为1,其余各位求反,但末位不加1 也就是说,反码末位加上1就是补码 1100110011 原 1011001100 反 除符号位,按位取反 1011001101 补 除符号位,按位取反再加1 正数的原反补是一样的 在计算机中,数据是以补码的形式存储的: 在n位的机器数中,最高位为符号位,该位为零表示为正,为1表示为负; 其余n-1位为数值位,各位的值可为0或1。
45、 当真值为正时:原码、反码、补码数值位完全相同; 当真值为负时: 原码的数值位保持原样, 反码的数值位是原码数值位的各位取反, 补码则是反码的最低位加一。
46、 注意符号位不变。
47、 如:若机器数是16位: 十进制数 17 的原码、反码与补码均为: 0000000000010001 十进制数-17 的原码、反码与补码分别为:1000000000010001111111111101110、1111111111101111。

阅读更多 >>>  计算机为什么使用补码来存储数据

求十六位进制数(18.69)的二进制数原码、反码和补码表示

首先,将十六进制数18.69转换为二进制数。可以将整数部分和小数部分分别转换为二进制数,然后将它们组合在一起。具体如下:
将整数部分18转换为二进制数:
18 / 2 = 9 余数 0
9 / 2 = 4 余数 1
4 / 2 = 2 余数 0
2 / 2 = 1 余数 0
1 / 2 = 0 余数 1
将余数倒过来,得到18的二进制数为10010。
将小数部分0.69转换为二进制数:
0.69 × 2 = 1.38 整数部分为1
0.38 × 2 = 0.76 整数部分为0
0.76 × 2 = 1.52 整数部分为1
0.52 × 2 = 1.04 整数部分为1
0.04 × 2 = 0.08 整数部分为0
0.08 × 2 = 0.16 整数部分为0
0.16 × 2 = 0.32 整数部分为0
0.32 × 2 = 0.64 整数部分为0
0.64 × 2 = 1.28 整数部分为1
0.28 × 2 = 0.56 整数部分为0
0.56 × 2 = 1.12 整数部分为1
0.12 × 2 = 0.24 整数部分为0
0.24 × 2 = 0.48 整数部分为0
0.48 × 2 = 0.96 整数部分为0
0.96 × 2 = 1.92 整数部分为1
0.92 × 2 = 1.84 整数部分为1
0.84 × 2 = 1.68 整数部分为1
0.68 × 2 = 1.36 整数部分为1
将整数部分组合在一起,得到小数部分0.69的二进制数为1011001110011011。
将整数部分和小数部分组合在一起,得到18.69的二进制数为10010.1011001110011011。
接下来,对二进制数进行符号位扩展,即将符号位(即最高位)复制到左侧的所有位上。
因为18.69是正数,所以符号位为0,因此,其二进制数的原码、反码和补码均相同,均为:
0001 0010.1011 0011 1001 1011
其中,第一个0表示正数,其余位表示数值。这就是18.69的二进制数的原码、反码和补码表示。

十六进制数的原码补码反码怎么表示

原码:将十六进制数66H的每一位转换成二进制,再在最高位添加符号位,即11001100。反码:对原码进行取反,即变成00110011。补码:在反码基础上加1,即变成00110100。因为169是正数,所以符号位为0,因此,其二进制数的原码、反码和补码均相同,均为:0001001011001110011011其中,第一个0表示正数,其余位表示数值。这就是169的二进制数的原码、反码和补码表示。对于正数:反码==补码==原码。对于负数:反码==除符号位以外的各位取反。补码==反码+原码==补码-1后的反码==补码的反码+1先将你的十进制改成二进制的,转换后再改成十六进制的。

网站数据信息

"求原码反码补码,十六进制数的原码补码反码怎么表示"浏览人数已经达到19次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:求原码反码补码,十六进制数的原码补码反码怎么表示的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!