计算机的补码怎么算,计算机原码反码补码怎么算
计算机的补码怎么算,计算机原码反码补码怎么算详细介绍
本文目录一览: 补码怎么计算?
计算机中的计算,都是用补码进行的。
补码怎么计算?
很简单,就按照“逢二进一”进行,就完事了。
+62原码01000001,反码和补码与原码相同
-62原码11000001:
反码10111110
补码10111111
例如:
+64 原码=反码=补码=0100 0000。
-10 原码=1000 1010;
-10 反码=1111 0101;
-10 补码=1111 0110。
以补码相加,得:0011 0110,这是+54 的补码。
扩展资料:
假设当前时针指向8点,而准确时间是6点,调整时间可有以下两种拨法:一种是倒拨2小时,即8-2=6;另一种是顺拨10小时,8+10=12+6=6,即8-2=8+10=8+12-2(mod 12).在12为模的系统里,加10和减2效果是一样的,因此凡是减2运算,都可以用加10来代替。
若用一般公式可表示为:a-b=a-b+mod=a+mod-b。对“模”而言,2和10互为补数。实际上,以12为模的系统中,11和1,8和4,9和3,7和5,6和6都有这个特性,共同的特点是两者相加等于模。
参考资料来源:百度百科-补码
计算机原码补码的计算
在计算机系统中,数值,一律使用补码来表示和存储。
原码和反码,在计算机中,都不存在,所以,和它们的转换,也是不存在的。
正负数值和补码,有一个转换公式,可以直接转换,不需要讨论原码和补码。
应该从“模”这个出发点,来讨论补码,这才能理解补码的意义。
学习原码反码符号位取反加一,这就走错道了。
计算机原码补码的计算方法:
1、原码:在计算机中的机器字长的最高位(最左边)表示正负,0为正数,1为负数,原码就是最高位是符号位,其余位表示数值(绝对值)大小。
2、反码:正数的反码就是其本身(原码)不变,而负数的反码就是在负数原码的基础上符号位保持不变,其余位按位取反。
3、补码:正数的补码就是其本身(原码),而负数的补码就是在原码的基础上符号位保持不变其余位按位取反,然后再+1,即在反码的基础上+1。
总结:正数的原码、反码和补码都一样,都等于原码。负数的反码就是在原码的基础上符号位不变其余位按位取反,负数的补码就是在反码的基础上+1。
扩展资料:
原码(true form)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。
原码不能直接参加运算,可能会出错。例如数学上,1+(-1)=0,而在二进制中00000001+10000001=10000010,换算成十进制为-2。显然出错了。所以原码的符号位不能直接参与运算,必须和其他位分开,这就增加了硬件的开销和复杂性。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。
补码“模”概念的引入、负数补码的实质、以及补码和真值之间的关系所揭示的补码符号位所具有的数学特征,无不体现了补码在计算机中表示数值型数据的优势,和原码、反码等相比可表现在如下方面:
(1)解决了符号的表示的问题;
(2)可以将减法运算转化为补码的加法运算来实现,克服了原码加减法运算繁杂的弊端,可有效简化运算器的设计;
(3)在计算机中,利用电子器件的特点实现补码和真值、原码之间的相互转换,非常容易;
(4)补码表示统一了符号位和数值位,使得符号位可以和数值位一起直接参与运算,这也为后面设计乘法器除法器等运算器件提供了极大的方便。
参考资料:百度百科-原码、百度百科-补码
补码是怎样计算的?
无论是十进制还是十六进制的数,在求补码时,都先转化为二进制,再进行补码的转换。
例如:
15的十六进制为F,转化为二进制为00001111,再转为反码00001111,最后转化为补码00001111。
正整数的补码是其二进制表示,与原码相同。
扩展资料:
原码(true form)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。
在计算机系统中,数值一律用补码来表示和存储。原因在于,使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。此外,补码与原码相互转换,其运算过程是相同的,不需要额外的硬件电路。
补码的特性:
1,一个负整数(或原码)与其补数(或补码)相加,和为模。
2,对一个整数的补码再求补码,等于该整数自身。
3,补码的正零与负零表示方法相同。
参考资料来源:百度百科-补码
计算机中什么叫补码啊``` 怎么算的?
1、补码就是正数不变,负数按位取反再加1,要先转化成2进制再算,符号正为0,负为1,取反的时候不变,你直接算出X+Y和X-Y的结果,再变成补码就可以了
2、最小值:11111111(-127),最大值01111111(+128)
补码,在计算机中,有所应用。
但是,补码的来源,是由算法导出的,和计算机无关。
比如,一个小孩,很小的。
他只认识 100 个数,也不会做减法。
那么,减一,就可以告诉他,用加 99 代替:
36 - 1 = 35
36 + 99 = (1) 35
忽略进位,结果不是一样的吗?
99,就是-1 的补数。
算法: 补数=模+负数。
其中的“模”,是计数系统中,数字个数的总数。
补码,也就是二进制的补数。
八位二进制,共有 256 个数字,模,就是 256。
255(1111 1111),就是-1 的补码;
254(1111 1110),就是-2 的补码;
... ...
128(1000 0000),就是-128 的补码。
算法:
补码=256 +负数。
正数,直接参加运算即可,用不着转换。
如何求补码
首先应确定,补码的位数。
再看下图,即可找到方法。
回答问题之前先让我们来了解一下:
一个数在计算机中的二进制表示形式, 叫做这个数的机器数。机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1。
原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值。
反码的表示方法是:正数的反码是其本身;负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。
补码的表示方法是:正数的补码就是其本身;负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1 (即在反码的基础上+1)。
因此我们在求一个数的补码之前,应当先求出这个数的原码。
将一个数转化为二进制数,既是它的源码。可通过除二求余法算得(既对一个数除二求余,这会得出一个数和一个余数,再对得出来的数进行求余,得出余数,以此类推,最后将余数倒写即可)。
如是一个正数,它的补码与它的原码相同;如果是一个负数,它的补码是在它的原码的基础上,开头符号位不变,其余各位取反,最后再在其上面+1(既在反码的基础上+1)。
计算机原码反码补码怎样计算
计算机中,只有补码,没有原码和反码。
数字,在计算机中,一律用补码表示。
数字与补码的关系,可见下表:
换算公式,很简单的,一看便知。
原码反码取反加一,实际上,都没有什么用处。
老外数学不好,才不得不用这么麻烦的做法。
计算机原码反码补码计算方法:
1、原码
原码就是符号位加上真值的绝对值,即用第一位表示符号,其余位表示值。比如如果是8位二进制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:[1111 1111 , 0111 1111]
即[-127 , 127]
原码是人脑最容易理解和计算的表示方式。
2、反码
反码的表示方法是:正数的反码是其本身。负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
可见如果一个反码表示的是负数,人脑无法直观地看出来它的数值。通常要将其转换成原码再计算。
3、补码
补码的表示方法是:正数的补码就是其本身。负数的补码是在其原码的基础上,符号位不变,其余各位取反,最后+1。(即在反码的基础上+1)。
[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补
对于负数,补码表示方式也是人脑无法直观看出其数值的。通常也需要转换成原码在计算其数值。
扩展资料:
原码,反码和补码是完全不同的。既然原码才是被人脑直接识别并用于计算表示方式,为何还会有反码和补码呢?
首先,因为人脑可以知道第一位是符号位,在计算的时候我们会根据符号位,选择对真值区域的加减。但是对于计算机,加减乘数已经是最基础的运算,要设计的尽量简单。计算机辨别"符号位"显然会让计算机的基础电路设计变得十分复杂。于是人们想出了将符号位也参与运算的方法。我们知道,根据运算法则减去一个正数等于加上一个负数,即: 1-1 = 1 + (-1) = 0 , 所以机器可以只有加法而没有减法,这样计算机运算的设计就更简单了。
于是人们开始探索将符号位参与运算,并且只保留加法的方法。
原码反码补码怎么算
原码反码补码计算方法如下:
一、原码
1:字长为8 , 符号位(首位)为0 表示正数 ; 符号位(首位)为1 表示负数。
2:0000 0001 表示 正1 ; 1000 0001 表示负1。
二、反码
1:正数,反码和原码一样。正1的原码和反码为0000 0001。
2:负数,符号位不变,其他位取反。负1的反码为:1111 1110。
三、补码
1:正数,补码和原码一样。正1的补码为 0000 0001。
2:负数,补码为反码加1,负1的补码为 1111 1111。
3:计算机在计算的时候是用补码在计算。
四、移码
1:补码的符号位取反 正1的移码为 1000 0001 ; 负1的移码为 0111 1111。
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统。
数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。
其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
补码怎么算
计算机中的计算,都是用补码进行的。
补码怎么算?
极其简单!
计算机中,只有加法器。
补码的计算,也只有一种:加法。
你记住:逢二进一,就行了。
补码的计算方法有二进制补码的计算和十进制补码的计算。
1、二进制补码的计算方法:
二进制的补码计算非常简单,各种教材中也经常使用二进制来说明源码、反码与补码三者的关系,掌握一定基础的人都知道一下规则:
(1)原码。
最高位为符号位,0表示正数,1表示负数。
例如:X=0b11(3),四比特表示原码=0011(3);
X=-0b11(-3),四比特表示原码=1011(11);
(2)反码。
最高位为符号位,0表示正数,1表示负数。正数的反码等于本身,负数的反码除符号位外,各位取反。
例如:X=0b11(3),四比特表示原码=0011(3),对应反码为=0011(3);
X=-0b11(-3),四比特表示原码=1011(11),对应反码为=1100(12);
(3)补码。
最高位为符号位,0表示正数,1表示负数。
正数的补码等于本身,负数的补码等于反码+1:
例如:X=0b11(3),四比特表示原码=0011(3),对应反码为=0011(3),补码为=0011(3);
X=-0b11(-3),四比特表示原码=1011(11),对应反码为=1100(12),补码为1101(13);
2、十进制补码的计算方法:
对于十进制数来说,通过前面的性质不难得到正十进制数补码等于其本身,对于负十进制数来说如果还按位进行运算就太麻烦了!为了讲明白,我们从补码的起因说起:
“反码加一”只是补码所具有的一个性质,不能被定义成补码。负数的补码,是能够和其相反数相加通过溢出从而使计算机内计算结果变为0的二进制码。这是补码设计的初衷,具体目标就是让1+(-1)=0,这利用原码是无法得到的:
0001(1)+1001(-1)=1010(-2)。
而在补码中:
0001(1补)+1111(-1补)=10000(1溢出)。
所以对于一个n位的负数-X,有如下关系:X补+(-X)补=100...0=2n。
所以假设寄存器是n位的,那么-X的补码,应该是2n?X的二进制编码。
计算机原码反码补码怎么算
在计算机系统中,数值,一律用补码来表示和存储。
只要会求补码,就够用了。
-----------------
计算机,所计算的位数,是固定的。
八位机就是八位,16 位机就是 16。。。
位数,限定了之后,即使出现了进位,也不再考虑。
在这个前提下,加法、减法,就可以互换。
比如,两位十进制是 00~99。
周期是 100(即一百)。
减一,就和 +99,作用相同。
25 - 1 = 24
25 + 99 = (一百) 24
舍弃进位,加法,就能起“减法”的作用。
99,就是-1 的补数。
借助于补数,加减法,就可以统一为加法。
借助于补码,就可以简化计算机的硬件。
八位的二进制是:0000 0000~1111 1111(十进制255)。
周期是 2^8 = 256。
-1 的补码就是:256-1 = 255(二进制 1111 1111)。
-2 的补码就是:256-2 = 254(二进制 1111 1110)。
。。。
公式:
负数的补码 = 周期 + 该负数。
零和正数,不存在补码,直接就可以参加计算。
补码,就是这么计算出来的。
补码,和原码反码,毫无关系。
计算机中,也并没有原码反码,因此,就不必讨论它们。
计算机中,并没有原码和反码,只是使用补码,代表正负数。
使用补码的意义:可以把减法或负数,转换为加法运算。从而简化计算机的硬件。
------------
比如钟表,时针转一圈,周期是 12 小时。
倒拨 3 小时,可以用正拨 9 小时代替。
9,就称为-3 的补数。
计算方法:12-3 = 9。
对于分针,倒拨 X 分,就可以用正拨 60-X 代替。
------------
如果,限定了两位十进制数 (0~99),周期就是 100。
那么,减一,就可以用 +99 代替。
24-1 = 23
24 + 99 = (1) 23
忽略进位,只取两位数,这两种算法,结果就是相同的。
于是,99 就是 -1 的补数。
其它负数的补数,大家可以自己求!
求出了负数的补数,就可用加法,代替减法了。
------------
计算机中使用二进制,补数,就改称为【补码】。
常用的八位二进制是:0000 0000~1111 1111。
它们代表了十进制:0~255,周期就是 256。
那么,-1,就可以用 255 = 1111 1111 代替。
所以:-1 的补码,就是 1111 1111 = 255。
同理:-2 的补码,就是 1111 1110 = 254。
继续:-3 的补码,就是 1111 1101 = 253。
。。。
最后:-128,补码是 1000 0000 = 128。
计算公式:负数的补码=256+这个负数。
正数,直接运算即可,不需要求补码。
也可以说,正数本身就是补码。
------------
补码的应用如: 7-3 = 4。
用补码的计算过程如下:
7 的补码=0000 0111
-3的补码=1111 1101
--相加-------------
得: (1) 0000 0100 = 4 的补码
舍弃进位,只保留八位,作为结果即可。
这就是:使用补码,加法就代替了减法。
所以,在计算机中,有一个加法器,就够用了。
原码和反码,都没有这种功能。
------------
原码和反码,毫无用处。计算机中,根本就没有它们。