关系型数据库和非关系型数据库的区别,关系型数据库和非关系型数据库区别?
关系型数据库和非关系型数据库的区别,关系型数据库和非关系型数据库区别?详细介绍
本文目录一览: 关系型数据库和非关系型区别
关系型数据库和非关系型在成本、查询速率、储存格式、可扩展性、数据一致性、事务处理上有区别。
1、 成本:Nosql数据库易部署,不用像Oracle那般花费较高成本选购。
2、 查询速率:Nosql数据库将数据储存于缓存当中,不用历经SQL层的分析;关系型数据库将数据储存在电脑硬盘中,查询速率远不如Nosql数据库。
3、 储存格式:Nosql的储存文件格式是keyvalue方式、文本文档方式、照片方式这些,能储存的对象种类灵活;关系数据库则只适用基础类型。
4、 可扩展性:关系型数据库有join那样的多表查询机制限定造成拓展性较差。Nosql依据键值对,数据中间没有耦合度,因此容易水平拓展。
5、 数据一致性:非关系型数据库注重最终一致性;关系型数据库注重数据整个生命周期的强一致性。
6、 事务处理:SQL数据库支持事务原子性粒度控制,且方便进行事务回滚;NoSQL也支持事务处理,但可靠性不足,其价值在于可扩展性和大数据量处理。
关系型数据库和非关系型区别
关系型数据库和非关系型区别是扩展方式不同,数据存储方式不同、对事务性的支持不同。
1、扩展方式不同
因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。而NoSQL数据库是横向扩展的。
而非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
2、数据存储方式不同
关系型和非关系型数据库的主bai要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。
3、对事务性的支持不同
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
关系型数据库和非关系型数据库区别?
1、数据存储方式不同。
关系型和非关系型数据库的主要差异是数据存储的方式。关系型数据天然就是表格式的,因此存储在数据表的行和列中。数据表可以彼此关联协作存储,也很容易提取数据。
与其相反,非关系型数据不适合存储在数据表的行和列中,而是大块组合在一起。非关系型数据通常存储在数据集中,就像文档、键值对或者图结构。你的数据及其特性是选择数据存储和提取方式的首要影响因素。
2、扩展方式不同。
SQL和NoSQL数据库最大的差别可能是在扩展方式上,要支持日益增长的需求当然要扩展。
要支持更多并发量,SQL数据库是纵向扩展,也就是说提高处理能力,使用速度更快速的计算机,这样处理相同的数据集就更快了。
因为数据存储在关系表中,操作的性能瓶颈可能涉及很多个表,这都需要通过提高计算机性能来客服。虽然SQL数据库有很大扩展空间,但最终肯定会达到纵向扩展的上限。而NoSQL数据库是横向扩展的。
而非关系型数据存储天然就是分布式的,NoSQL数据库的扩展可以通过给资源池添加更多普通的数据库服务器(节点)来分担负载。
3、对事务性的支持不同。
如果数据操作需要高事务性或者复杂数据查询需要控制执行计划,那么传统的SQL数据库从性能和稳定性方面考虑是你的最佳选择。SQL数据库支持对事务原子性细粒度控制,并且易于回滚事务。
虽然NoSQL数据库也可以使用事务操作,但稳定性方面没法和关系型数据库比较,所以它们真正闪亮的价值是在操作的扩展性和大数据量处理方面。
参考资料来源:百度百科——关系型数据库
参考资料来源:百度百科——非关系型数据库
关系数据库与非关系型数据库
关系数据库、非关系型数据库。
1、关系数据库
特点:数据集中控制;减少数据冗余等。
适用范围:对于结构化数据的处理更合适,如学生成绩、地址等,这样的数据一般情况下需要使用结构化的查询。
2、非关系数据库
特点:易扩展;大数据量,高性能;灵活的数据模型等。
使用范围:据模型比较简单;需要灵活性更强的IT系统;对数据库性能要求较高。
扩展资料:
非关系数据库的分类:
1、列存储数据库
这部分数据库通常是用来应对分布式存储的海量数据。键仍然存在,但是它们的特点是指向了多个列。这些列是由列家族来安排的。如:Cassandra,HBase,Riak。
2、文档型数据库
文档型数据库的灵感是来自于LotusNotes办公软件的,而且它同第一种键值存储相类似。该类型的数据模型是版本化的文档,半结构化的文档以特定的格式存储,比如JSON。文档型数据库可以看作是键值数据库的升级版,允许之间嵌套键值。而且文档型数据库比键值数据库的查询效率更高。如:CouchDB,MongoDb.国内也有文档型数据库SequoiaDB,已经开源。
数据库主要分为哪两种类型?
数据库一般分为两种类型:关系型数据库和非关系型数据库
关系型数据库
关系型数据库是最常见的数据,其内部采用库表结构,每一条记录可以记录多个数据类型的数据.一条记录内的数据彼此之间存在关系.
例如:
ID name age sex
1 张三 12 男
因为彼此之间存在关系,所以不论你搜索id=1/name=张三/age=12/sex=男都能搜出来这条记录.
代表软件:Mysql access SQLServer Oracle
非关系型数据库
非关系型数据库是目前比较新的一种数据库,特点就是数据全部由键值对(key/value)组成.获取数据一般只通过键(key)来获取.
例如:
ID Value
1 aaa.avi
2 bbb.MP4
这种数据库优点是,速度快,需要明确的目标key来快速指定和获取目标.一般目前在大数据存储上体现着优势.例如大型视频库,只需要知道视频的id就能快速得知视频位置.
当然这不是主要的,非关系型数据库有个极大的优势,就是一般都采用内存缓存方式存在.它们一般把数据拷贝一份放在内存中,这样可以更加快速的读取数据(内存的速度一般是硬盘的几十倍).
非关系型数据库另一个主要用途是快速缓存,即快速的缓存一些数据,但并不一定要长期保留,例如直播中的弹幕,一般都会采用非关系型数据库来保存,到期之后批量写入关系型数据库保存,然后自我清空.
代表软件:Mongodb Redis Memcache
实际使用
在实际使用中,一般都是关系型数据库独立使用,关系型数据库+非关系型数据库一起用这两种方式.因为非关系型数据库一般不用来存储,所以还是需要关系型数据库来保存一些数据.
总结
关系型数据库:存储长期稳定数据,例如会员信息等等.但是读取写入速度慢,高并发时较麻烦,容易产生瓶颈.
非关系型数据库:存储临时数据或需要快速读取数据,例如弹幕等.但是一般不用来保存数据,内存关机即清空.
四种模糊数据库指能够处理模糊数据的数据库。一般的数据库都是以二直逻辑和精确的数据工具为基础的,不能表示许多模糊不清的 事情。随着模糊数学理论体系的建立,人们可以用数量来描述模糊事件并能进行模糊运算。这样就可以把不完全性、不确定性、模糊性引入数据库系统中,从而形成模糊数据库。模糊数据库研究主要有两方面,首先是如何在数据库中存放模糊数据;其次是定义各种运算建立模糊数据上的函数。模糊数的表示主要有模糊区间数、模糊中心数、模糊集合数和隶属函数等。统计数据库管理统计数据的数据库系统。这类数据库包含有大量的数据记录,但其目的是向用户提供各种统计汇总信息,而不是提供单个记录的信息。网状数据库处理以记录类型为结点的网状数据模型的数据库。处理方法是将网状结构分解成若干棵二级树结构,称为系。系类型 是二个或二个以上的记录类型之间联系的一种描述。在一个系类型中,有一个记录类型处于主导地位,称为系主记录类 型,其它称为成员记录类型。系主和成员之间的联系是一对多的联系。网状数据库的代表是DBTG系统。1969年美国的 CODASYL组织提出了一份“DBTG报告”,以后,根据DBTG报告实现的系统一般称 为DBTG系统。现有的网状数据库系统大都是采用DBTG方案的。DBTG系统是典型的三级结构体系:子模式、模式、存储模式。相应的数据定义语言分别称为子模式定义语言SSDDL,模式定义语言SDDL,设备介质控制语言DMCL。另外还有数据操纵语言DML。演绎数据库是指具有演绎推理能力的数据库。一般地,它用一个数据库管理系统和一个规则管理系统来实现。将推理用的事实数据存放在数据库中,称为外延数据库;用逻辑规则定义要导出的事实,称为内涵数据库。主要研究内容为,如何有效地计 算逻辑规则推理。具体为:递归查询的优化、规则的一致性维护等。
数据库主要分为关系数据库和非关系型数据库(NoSQL)。
1、关系数据库
关系型数据库,存储的格式可以直观地反映实体间的关系。关系型数据库和常见的表格比较相似,关系型数据库中表与表之间是有很多复杂的关联关系的。
常见的关系型数据库有Mysql,SqlServer等。在轻量或者小型的应用中,使用不同的关系型数据库对系统的性能影响不大,但是在构建大型应用时,则需要根据应用的业务需求和性能需求,选择合适的关系型数据库。
2、非关系型数据库(NoSQL)
指分布式的、非关系型的、不保证遵循ACID原则的数据存储系统。NoSQL数据库技术与CAP理论、一致性哈希算法有密切关系。NoSQL数据库适合追求速度和可扩展性、业务多变的应用场景。
扩展资料
关系数据库分为两类:一类是桌面数据库,例如Access、FoxPro和dBase等;另一类是客户/服务器数据库,例如SQL Server、Oracle和Sybase等。桌面数据库用于小型的、单机的应用程序,它不需要网络和服务器,实现起来比较方便,但它只提供数据的存取功能。
客户/服务器数据库主要适用于大型的、多用户的数据库管理系统,应用程序包括两部分:一部分驻留在客户机上,用于向用户显示信息及实现与用户的交互;另一部分驻留在服务器中,主要用来实现对数据库的操作和对数据的计算处理。
参考资料来源:百度百科-关系数据库
参考资料来源:百度百科-数据库
关系型数据库和非关系型数据库的区别百度百科
关系型数据库和非关系型数据库的区别在于:
关系式数据结构把一些复杂的数据结构归结为简单的二元关系(即二维表格形式)。
层次结构模型实质上是一种有根结点的定向有序树(在数学中"树"被定义为一个无回的连通图)。按照层次模型建立的数据库系统称为层次模型数据库系统。按照网状数据结构建立的数据库系统称为网状数据库系统,用数学方法可将网状数据结构转化为层次数据结构。
关系型数据库与非关系型数据应用环境上有什么区别,如何选择哪种数据库类型?
关系型数据库最典型的数据结构是表,由二维表及其之间的联系所组成的一个数据组织。
优点:
1、易于维护:都是使用表结构,格式一致;
2、使用方便:SQL语言通用,可用于复杂查询;
3、复杂操作:支持SQL,可用于一个表以及多个表之间非常复杂的查询。
缺点:
1、读写性能比较差,尤其是海量数据的高效率读写;
2、固定的表结构,灵活度稍欠;
3、高并发读写需求,传统关系型数据库来说,硬盘I/O是一个很大的瓶颈。
二、非关系型数据库
非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合,可以是文档或者键值对等。
优点:
1、格式灵活:存储数据的格式可以是key,value形式、文档形式、图片形式等等,文档形式、图片形式等等,使用灵活,应用场景广泛,而关系型数据库则只支持基础类型。
2、速度快:nosql可以使用硬盘或者随机存储器作为载体,而关系型数据库只能使用硬盘;
3、高扩展性;
4、成本低:nosql数据库部署简单,基本都是开源软件。
缺点:
1、不提供sql支持,学习和使用成本较高;
2、无事务处理;
3、数据结构相对复杂,复杂查询方面稍欠。
非关系型数据库的分类和比较:
1、文档型
2、key-value型
3、列式数据库
4、图形数据库
NoSQL非关系数据库和关系型数据库的区别是什么
非关系型数据库:非关系型数据库产品是传统关系型数据库的功能阉割版本,通过减少用不到或很少用的功能,来大幅度提高产品性能。
非关系型数据库严格上不是一种数据库,应该是一种数据结构化存储方法的集合。
关系型数据库:是指采用了关系模型来组织数据的数据库。
关系模型指的就是二维表格模型,而一个关系型数据库就是由二维表及其之间的联系所组成的一个数据组织。
可以用SQL语句方便的在一个表以及多个表之间做非常复杂的数据查询。对于安全性能很高的数据访问要求可以实现。
价格
目前基本上大部分主流的非关系型数据库都是免费的。而比较有名气的关系型数据库,比如Oracle、DB2、MSSQL是收费的。虽然Mysql免费,但它需要做很多工作才能正式用于生产。功能实际开发中,有很多业务需求,其实并不需要完整的关系型数据库功能,非关系型数据库的功能就足够使用了。这种情况下,使用性能更高、成本更低的非关系型数据库当然是更明智的选择。
对于这两类数据库,对方的优势就是自己的弱势,反之亦然。
关系型和非关系型数据库的区别
关系型数据库通过外键关联来建立表与表之间的关系,非关系型数据库通常指数据以对象的形式存储在数据库中,而对象之间的关系通过每个对象自身的属性来决定
当前主流的关系型数据库有Oracle、DB2、Microsoft SQL Server、Microsoft Access、MySQL等。
非关系型数据库有 NoSql、Cloudant。
nosql和关系型数据库比较?
优点:
1)成本:nosql数据库简单易部署,基本都是开源软件,不需要像使用oracle那样花费大量成本购买使用,相比关系型数据库价格便宜。
2)查询速度:nosql数据库将数据存储于缓存之中,关系型数据库将数据存储在硬盘中,自然查询速度远不及nosql数据库。
3)存储数据的格式:nosql的存储格式是key,value形式、文档形式、图片形式等等,所以可以存储基础类型以及对象或者是集合等各种格式,而数据库则只支持基础类型。
4)扩展性:关系型数据库有类似join这样的多表查询机制的限制导致扩展很艰难。
缺点:
1)维护的工具和资料有限,因为nosql是属于新的技术,不能和关系型数据库10几年的技术同日而语。
2)不提供对sql的支持,如果不支持sql这样的工业标准,将产生一定用户的学习和使用成本。
3)不提供关系型数据库对事物的处理。