百度
360搜索
搜狗搜索

numpy是什么,python中的numpy是什么详细介绍

本文目录一览: numpy是什么意思

numpy的意思:是Python的一种开源的数值计算扩展。
补充资料:
Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。python是一个高层次的结合了解释性、编译性、互动性和面向对象的脚本语言。最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
Python由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991年。像Perl语言一样,Python 源代码同样遵循 GPL(GNU General Public License)协议。
简介:
Python由荷兰数学和计算机科学研究学会的Guido van Rossum于1990 年代初设计,作为一门叫做ABC语言的替代品。Python提供了高效的高级数据结构,还能简单有效地面向对象编程。
Python语法和动态类型,以及解释型语言的本质,使它成为多数平台上写脚本和快速开发应用的编程语言,随着版本的不断更新和语言新功能的添加,逐渐被用于独立的、大型项目的开发。

numpy是什么

NumPy系统是Python的一种开源的数值计算扩展,这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多(该结构也可以用来表示矩阵(matrix))。一:Numpy相关介绍:一个用python实现的科学计算包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。二:NumPy包的核心是ndarray对象。这封装了同构数据类型的n维数组,许多操作在编译代码中执行以提高性能。NumPy数组和标准Python序列之间有几个重要的区别:?NumPy数组在创建时具有固定大小,与Python列表(可以动态增长)不同。更改ndarray的大小将创建一个新数组并删除原始数组。?NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。例外:可以有(Python,包括NumPy)对象的数组,从而允许不同大小的元素的数组。?NumPy数组有助于对大量数据进行高级数学和其他类型的操作。通常,与使用Python的内置序列相比,这些操作的执行效率更高,代码更少。?越来越多的基于Python的科学和数学软件包正在使用NumPy数组; 虽然这些通常支持Python序列输入,但它们在处理之前将这些输入转换为NumPy数组,并且它们通常输出NumPy数组。换句话说,为了有效地使用当今大量(甚至大多数)基于Python的科学/数学软件,只知道如何使用Python的内置序列类型是不够的 - 还需要知道如何使用NumPy数组。

python中的numpy是什么

NumPy是Python中科学计算的基础包。它是一个Python库,提供多维数组对象,各种派生对象(如掩码数组和矩阵),以及用于数组快速操作的各种例程,包括数学,逻辑,形状操作,排序,选择,I / O离散傅立叶变换,基本线性代数,基本统计运算,随机模拟等等。NumPy包的核心是ndarray对象。这封装了同构数据类型的n维数组,许多操作在编译代码中执行以提高性能。NumPy数组和标准Python序列之间有几个重要的区别:1、NumPy数组在创建时具有固定大小,与Python列表(可以动态增长)不同。更改ndarray的大小将创建一个新数组并删除原始数组。2、NumPy数组中的元素都需要具有相同的数据类型,因此在内存中的大小相同。例外:可以有(Python,包括NumPy)对象的数组,从而允许不同大小的元素的数组。3、NumPy数组有助于对大量数据进行高级数学和其他类型的操作。通常,与使用Python的内置序列相比,这些操作的执行效率更高,代码更少。4、越来越多的基于Python的科学和数学软件包正在使用NumPy数组; 虽然这些通常支持Python序列输入,但它们在处理之前将这些输入转换为NumPy数组,并且它们通常输出NumPy数组。换句话说,为了有效地使用当今大量(甚至大多数)基于Python的科学/数学软件,只知道如何使用Python的内置序列类型是不够的 - 还需要知道如何使用NumPy数组。

什么是 NUMPY ?

NUMPY 是科学计算包,可以有效地存储和操作数值数组。
蓝海大脑边缘计算液冷服务器研究人员表示:
NumPy 是一个免费的 Python 编程语言开源库,它功能强大、已经过充分优化,并增加了对大型多维数组(也称为矩阵或张量)的支持。NumPy 还提供了一系列高级数学函数,可与这些数组结合使用。其中包括基本的线性代数、随机模拟、傅立叶变换、三角运算和统计运算。
NumPy 代表 “numerical Python”,基于早期的 Numeric 和 Numarray 库构建而成,旨在为 Python 提供快速的数字计算。如今,NumPy 贡献者众多,并得到了 NumFOCUS 的赞助。
作为科学计算的核心库,NumPy 是 Pandas、Scikit-learn 和 SciPy 等库的基础。它广泛应用于在大型数组上执行优化的数学运算。

python numpy是什么库

NumPy是Python的一种开源的数值计算扩展,这种工具可以用来存储和处理大型矩阵,比如Python自身的嵌套列表结构要高效的多,支持大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。
NumPy提供了许多高级的数值编程工具,如:矩阵数据类型、矢量处理以及精密的运算库。专为进行严格的数字处理而产生,多为大型金融公司使用,以及核心的科学计算组织如:Lawrence
livermore、nasa用其处理一些本来使用C++,Fortran或matlab等所做的任务。
NumPy支持的数据类型比Python内置的数据类型要多很多,基本上可以和C语言的数据类型对应上,其中部分类型对应为Python内置的类型。
bool_:布尔型数据类型(true或false)
Int_:默认的整数类型(类似于C语言中的long,int32或int64)
Intc:与C的int类型一样,一般是int32或者int64
intp:用于索引的整数类型,类似于C的ssize_t
int8:字节(-128 to 127)
int16:整数(-32768 to 32767)
int32:整数(-2147483648 to 2147483647)
int64:整数(-9223372036854775808 to 9223372036854775807)
uint8:无符号整数(0 to 255)
uint16:无符号整数(0 to 65535)
uint32:无符号整数(0 to 4294967295)
uint64:无符号整数(0 to 13800709551615)
float_:float64 类型的简写
float16:半精度浮点数,包括:1 个符号位,5 个指数位,10 个尾数位
float32:单精度浮点数,包括:1 个符号位,8 个指数位,23 个尾数位
float64:双精度浮点数,包括:1 个符号位,11 个指数位,52 个尾数位
complex_:complex128 类型的简写,即 128 位复数
complex64:复数,表示双 32 位浮点数(实数部分和虚数部分)
complex128:复数,表示双 64 位浮点数(实数部分和虚数部分)
Numpy库是一个专门用于科学计算和数值分析的Python插件。它提供了一种高效的多维数组对象,以及各种派生对象,用于数学函数的操作,并且能够高效地读写磁盘上的数据。
以下是Numpy库的重要特点:
1、快速的数组操作:numpy的核心是其数组对象,能够在Python中进行高效的操作。
2、丰富的科学计算库:Numpy是用于科学计算和数据分析的库,因此提供了大量高效的数学函数和算法,如线性代数、傅里叶变换、随机数生成等。
3、跨平台支持:numpy的代码可在多个操作系统和硬件上运行。
4、大规模数据集支持:numpy为大规模数据集处理提供了出色的支持。它可以处理多维度数据,支持数组的索引和切片,使得程序在处理大型跨越多个变量的数据集方面变得更加容易。
5、扩展库支持:numpy是一个支持丰富扩展库的库。许多其他的科学计算和数据分析工具都依赖于numpy库作为其基础。
在numpy库中,最重要的特点之一就是它的多维数组对象。这些对象被称为ndarray,是numpy库的核心数据结构。ndarray由两部分组成:由相同类型数据元素的N维数组与该数组相关的维度和形状。ndarray的维度和形状可以通过shape属性获得。ndarray类型的定义如下:
import numpy as np
arr = np.array([1,2,3,4,5]) #一维数组
print(arr)
#输出结果:
#[1 2 3 4 5]
可以看到,numpy数组的创建方式是通过Python列表的方式创建的。
NumPy是Python语言的一个扩充程序库。支持高级大量的维度数组与矩阵运算,此外也针对数组运算提供大量的数学函数库。Numpy内部解除了CPython的GIL(全局解释器锁),运行效率极好,是大量机器学习框架的基础库!
相关推荐:《Python基础教程》
NumPy的全名为Numeric Python,是一个开源的Python科学计算库,它包括:
·一个强大的N维数组对象ndrray;
·比较成熟的(广播)函数库;
·用于整合C/C++和Fortran代码的工具包;
·实用的线性代数、傅里叶变换和随机数生成函数。
NumPy的优点:
·对于同样的数值计算任务,使用NumPy要比直接编写Python代码便捷得多;
·NumPy中的数组的存储效率和输入输出性能均远远优于Python中等价的基本数据结构,且其能够提升的性能是与数组中的元素成比例的;
·NumPy的大部分代码都是用C语言写的,其底层算法在设计时就有着优异的性能,这使得NumPy比纯Python代码高效得多。
当然,NumPy也有其不足之处,由于NumPy使用内存映射文件以达到最优的数据读写性能,而内存的大小限制了其对TB级大文件的处理;此外,NumPy数组的通用性不及Python提供的list容器。因此,在科学计算之外的领域,NumPy的优势也就不那么明显。

Numpy基础20问

一言以蔽之,numpy是python中基于数组对象的科学计算库。
提炼关键字,可以得出numpy以下三大特点:
因为numpy是一个python库,所以使用python包管理工具pip或者conda都可以安装。
安装python后,打开cmd命令行,输入:
即可完成安装。
n维数组(ndarray)对象,是一系列 同类数据 的集合,可以进行索引、切片、迭代操作。
numpy中可以使用 array 函数创建数组:
判断一个数组是几维,主要是看它有几个轴(axis)。
一个轴表示一维数组,两个轴表示二维数组,以此类推。
每个轴都代表一个一维数组。
比如说,二维数组第一个轴里的每个元素都是一个一维数组,也就是第二个轴。
一维数组一个轴:
二维数组两个轴:
三维数组三个轴:
以此类推n维数组。
numpy中常用 array 函数创建数组,传入列表或元组即可。
创建一维数组,并指定数组类型为 int :
创建二维数组:
还可以使用 arange 函数创建一维数字数组,用法类似python的 range 函数.
numpy的 random 模块用来创建随机数组。
random模块还有其他函数,这里不多说。
前面说到,数组维度即代表轴的数量。
我们可以通过数组(adarray)对象的ndim或shape属性,来查看轴的数量。
数组(ndarray)对象的 size 属性可以查看数组包含元素总数。
还可以通过 shape 属性返回元素的乘积,来计算数组元素数量。
Numpy支持的数据类型非常多,所以很适合做数值计算。 下面给出常见的数据类型:
数组(adarrry)对象提供 dtype 属性,用来查看数组类型。
前面说过,数组的 shape 属性返回一个元组,能够反映数组的形状,包括维度以及每个轴的元素数量。
那么如果给定一个数组,怎么改变其形状呢?
常用的方式有两种:
比如说我要将一个二维数组转换为三维数组。
reshape 方法可以传入整数或者元组形式的参数。
传入的参数和 shape 属性返回的元组的含义是一样的。
例如, x2.reshape(1,2,3) 是将二维数组转换成三维数组,参数个数代表要转换的维度,参数数字从左到右分别表示0轴、1轴、2轴的元素数量。
resize 方法和 reshape 方法使用形式一样,区别是 resize 方法改变了原始数组形状。
numpy一维数组的索引和切片操作类似python列表,这里不多讲。
比如说取一维数组前三个元素。
重点是对多维数组的索引和切片。
多维数组有多个轴,那么就需要对每个轴进行索引。
例如,三维数组形状为(x,y,z),分别代表:0轴有x个元素、1轴有y个元素,2轴有z个元素。
对0、1、2轴进行索引,如果取o轴第2个元素、1轴第0个元素、2轴第3个元素,那么索引形式就为[2,0,3]。
切片也是同样道理。
如果取o轴前2个元素、1轴前1个元素、2轴后2个元素,那么切片形式就为[:2,:1,-2:]。
说到迭代,大家很容易想到直接对数组直接使用 for 循环操作,对于一维数组来说,当然是可以的。
但对于多维数组,迭代是相对于0轴完成的,就是多维数组最外层的那一维。
你没有办法直接遍历数组里每一个元素,嵌套循环又太低效。
这个时候就需要用到 flat 方法,它可以将多维数组平铺为一维的迭代器。
数组(ndarray)对象提供了ravel方法,用来将多维数组展开为一维数组。
广播(Broadcast)是 numpy 对不同形状(shape)的数组进行数值计算的方式, 对多个数组的算术运算通常在相应的元素上进行。
较小的数组在较大的数组上“广播”,以便它们具有兼容的形状。
比如说一个一维数组乘以一个数字,相当于一维数组里每个元素都乘以这个数。
如果相同维度的数组进行运算,其shape相同,那么广播就是两个数组相同位数的元素进行运算。
如果两个数组维度不同,进行运算,这里就触发了广播的两个规则。
这两个规则保证了不同维度数组进行运算时,其维度自动调整成一致。
numpy提供了 transpose 函数用以对数组进行维度的调换,也就是转置操作。
转置后返回一个新数组。
当然,可以用更简单的方法。
数组对象提供了 T 方法,用于转置,同样会返回一个新数组。
numpy的 concatenate 函数用于沿指定轴连接相同形状的两个或多个数组。
numpy的 unique 函数用于去除数组中的重复元素,返回一个新数组。
unique 函数还能返回重复元素的索引、计数等信息,可去查文档自定义参数。
numpy文档
菜鸟教程

阅读更多 >>>  python培训机构排名,python培训班哪个靠谱

python numpy有什么用

NumPy is the fundamental package for scientific computing with Python。就是科学计算包。
a powerful N-dimensional array object
sophisticated (broadcasting) functions
tools for integrating C/C++ and Fortran code
useful linear algebra, Fourier transform, and random number capabilities
一个用python实现的科学计算包。包括:1、一个强大的N维数组对象Array;2、比较成熟的(广播)函数库;3、用于整合C/C++和Fortran代码的工具包;4、实用的线性代数、傅里叶变换和随机数生成函数。numpy和稀疏矩阵运算包scipy配合使用更加方便。
NumPy系统是Python的一种开源的数字扩展。这种工具可用来存储和处理矩阵,比Python自身的嵌套列表结构要高效。据说NumPy将Python相当于变成一种免费的更强大的MatLab系统。

numpy和pandas性能用途有什么相同点?

Numpy和Pandas都是Python中用于数据处理和分析的库。它们都建立在C语言的基础上,因此在进行复杂的数据操作时,它们的运算速度比纯Python代码要快得多。
Numpy提供了一个多维数组对象,可以用于处理各种数据结构,例如一维数组、二维数组等。它还提供了一些用于数组操作的高性能函数,例如向量运算和线性代数运算。
Pandas则提供了一个称为Series的对象,它类似于Numpy中的一维数组,但具有更丰富的功能。Pandas还提供了一个称为DataFrame的对象,它类似于二维表格,可以用于处理和分析表格数据。Pandas也提供了许多用于数据操作的高性能函数,例如对Series和DataFrame进行聚合、分组、筛选等操作。
因此,Numpy和Pandas都可以用于处理和分析大量数据,并且它们的运算速度都比纯Python代码要快得多。

python数据分析方向的第三方库是什么

Python提供了许多第三方库,其中数据分析方向常见的如下:
1、Pandas
Pandas是Python强大、灵活的数据分析和探索工具,包含Series、DataFrame等高级数据结构和工具,安装Pandas可使Python中处理数据非常快速和简单。
Pandas是Python的一个数据分析包,Pandas最初被用作金融数据分析工具而开发出来,因此Pandas为时间序列分析提供了很好的支持。
2、Numpy
Python没有提供数组功能,Numpy可以提供数组支持以及相应的高效处理函数,是Python数据分析的基础,也是Scipy、Pandas等数据处理和科学计算库最基本的函数功能库,且其数据类型对Python数据分析十分有用。
Numpy提供了两种基本的对象:ndarray和ufuuc。ndarray是存储单一数据类型的多维数组,而ufunc是能够对数组进行处理的函数。
3、Matplotlib
Matplotlib是强大的数据可视化工具和作图库,是主要用于绘制数据图表的Python库,提供了绘制各类可视化图形的命令字库、简单的接口,可以方便用户轻松掌握图形的格式,绘制各类可视化图形。
Matplotlib是Python的一个可视化模块,他能方便的只做线条图、饼图、柱状图以及其他专业图形。
4、Scipy
Scipy是一组专门解决科学计算中各种标准问题域的包的集合,包含的功能有最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理和图像处理、常微分方程求解和其他科学与工程中常用的计算等,这些对数据分析和挖掘十分有用。
Scipy是一款方便、易于使用、专门为科学和工程设计的Python包,它包括统计、优化、整合、线性代数模块、傅里叶变换、信号和图像处理、常微分方程求解器等。
5、Keras
Keras是深度学习库,人工神经网络和深度学习模型,基于Theano之上,依赖于Numpy和Scipy,利用它可以搭建普通的神经网络和各种深度学习模型,如语言处理、图像识别、自编码器、循环神经网络、递归审计网络、卷积神经网络等。
6、Scrapy
Scrapy是专门为爬虫而生的工具,具有URL读取、HTML解析、存储数据等功能,可以使用Twisted异步网络库来处理网络通讯,架构清晰,且包含了各种中间件接口,可以灵活的完成各种需求。
7、Gensim
Gensim是用来做文本主题模型的库,常用于处理语言方面的任务,支持TF-IDF、LSA、LDA和word2Vec在内的多种主题模型算法,支持流式训练,并提供了诸如相似度计算、信息检索等一些常用任务的API接口。
Python除了有200个标准库以外,还有10万个第三方扩展库,囊括了方方面面。其中做数据分析最常用到的库有4个:
NumpyNumpy是Python科学计算的基础包。它除了为Python提供快速的数组处理能力,还是在算法和库之间传递数据的容器。对于数值型数据,NumPy数组在存储和处理数据时要比内置的 Python数据结构高效得多。此外,由低级语言(比如C和Fortran)编写的库可以直接操作NumPy 数组中的数据,无需进行任何数据复制工作。因此,许多Python的数值计算工具要么使用NumPy 数组作为主要的数据结构,要么可以与NumPy进行无缝交互操作。
PandasPandas提供了快速便捷处理结构化数据的大量数据结构和函数,兼具NumPy高性能的数组计算功能以及电子表格和关系型数据库(如SQL)灵活的数据处理功能。它提供了复杂精细的索引功能,能更加便捷地完成重塑、切片和切块、聚合以及选取数据子集等操作。因为数据操作、准备、清洗是数据分析最重要的技能,所以Pandas也是学习的重点。
MatplotlibMatplotlib是最流行的用于绘制图表和其它二维数据可视化的Python库,它非常适合创建出版物上用的图表。虽然还有其它的Python可视化库,但Matplotlib却是使用最广泛的,并且它和其它生态工具配合也非常完美。
Scikit-learnScikit-learn是Python的通用机器学习工具包。它的子模块包括分类、回归、聚类、降维、选型、预处理,对于Python成为高效数据科学编程语言起到了关键作用。

网站数据信息

"numpy是什么,python中的numpy是什么"浏览人数已经达到18次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:numpy是什么,python中的numpy是什么的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!