指数函数与对数函数知识点总结,高一数学第2章指数函数对数函数和幂函数知识点总结
指数函数与对数函数知识点总结,高一数学第2章指数函数对数函数和幂函数知识点总结详细介绍
本文目录一览: 对数函数和指数函数有哪些不同?
一、定义不同,从两者的数学表达式来看,两者的未知量X的位置刚好互换。
指数函数:自变量x在指数的位置上,y=a^x(a>0,a不等于1),当a>1时,函数是递增函数,且y>0;当0
<a
0.
幂函数:自变量x在底数的位置上,y=x^a(a不等于1)。a不等于1,但可正可负,取不同的值,图像及性质是不一样的。
二、性质不同
1、幂函数:
2、指数函数:
扩展资料
对数的运算法则:
1、log(a) (M·N)=log(a) M+log(a) N
2、log(a) (M÷N)=log(a) M-log(a) N
3、log(a) M^n=nlog(a) M
4、log(a)b*log(b)a=1
5、log(a) b=log (c) b÷log (c) a
指数的运算法则:
1、[a^m]×[a^n]=a^(m+n) 【同底数幂相乘,底数不变,指数相加】
2、[a^m]÷[a^n]=a^(m-n) 【同底数幂相除,底数不变,指数相减】
3、[a^m]^n=a^(mn) 【幂的乘方,底数不变,指数相乘】
4、[ab]^m=(a^m)×(a^m) 【积的乘方,等于各个因式分别乘方,再把所得的幂相乘】
</a
高一数学第2章指数函数对数函数和幂函数知识点总结
一、指数函数
指数函数是数学中重要的函数。应用到值e上的这个函数写为exp(x)。还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。
二、对数函数
对数公式是数学中的一种常见公式,如果a^x=N(a>0,且a≠1),则x叫做以a为底N的对数,记做x=log(a)(N),其中a要写于log右下。
三、幂函数
一般地,形如y=xα(α为实数)的函数,即以底数为自变量,幂为因变量,指数为常数的函数称为幂函数。例如函数y=x0 、y=x1、y=x2、y=x-1(注:y=x-1=1/x y=x0时x≠0)等都是幂函数。
对数函数、指数函数的定义分别是什么?
在对数函数和指数函数中,各部分的名称如下:对数函数:底数(Base):对数函数中的底数是指对数的基准值,通常用字母bb表示。在常见的对数函数中,底数通常为10(常用对数)或自然常数ee(自然对数)。真数(Antilogarithm):对数函数中的真数是指对数运算的结果,即对数函数的输出值。通常用字母xx表示。对数(Logarithm):对数函数中的对数是指将真数与底数进行对应关系的运算,表示为\log_b(x)log b? (x),其中bb为底数,xx为真数。指数函数:底数(Base):指数函数中的底数是指指数运算的基准值,通常用字母bb表示。在常见的指数函数中,底数可以是任意正实数。指数(Exponent):指数函数中的指数是指底数的幂次,表示为b^xb x ,其中bb为底数,xx为指数。结果(Result):指数函数中的结果是指指数运算的输出值,即指数函数的值。通常用字母yy表示。需要注意的是,对数函数和指数函数是互为反函数的关系,即对于任意实数xx和正实数bb,有\log_b(b^x) = xlog b? (b x )=x和b^{\log_b(x)} = xb log b? (x) =x。这种反函数关系使得对数函数和指数函数在数学和科学中具有重要的应用价值。
指数函数和对数函数知识点总概
你好!
指数函数和对数函数知识点
1.映射:注意 ①第一个集合中的元素必须有象;②一对一,或多对一。
2.函数值域的求法:①分析法 ;②配方法 ;③判别式法 ;④利用函数单调性 ;
⑤换元法 ;⑥利用均值不等式 ; ⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法
3.复合函数的有关问题
(1)复合函数定义域求法:
① 若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b解出② 若f[g(x)]的定义域为[a,b],求 f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:
①首先将原函数 分解为基本函数:内函数 与外函数 ;
②分别研究内、外函数在各自定义域内的单调性;
③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数 的定义域是内函数 的值域。
4.分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5.函数的奇偶性
⑴函数的定义域关于原点对称是函数具有奇偶性的必要条件;
⑵ 是奇函数
⑶ 是偶函数
⑷ 奇函数在原点有定义,则 ;
⑸在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;
(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;
6.函数的单调性
⑴单调性的定义:
⑵单调性的判定
1 定义法:
注意:一般要将式子 化为几个因式作积或作商的形式,以利于判断符号;
②导数法(见导数部分);
③复合函数法(见2 (2));
④图像法。
注:证明单调性主要用定义法和导数法。
7.函数的周期性
(1)周期性的定义:
对定义域内的任意 ,若有 (其中 为非零常数),则称函数 为周期函数, 为它的一个周期。
所有正周期中最小的称为函数的最小正周期。如没有特别说明,遇到的周期都指最小正周期。
(2)三角函数的周期
⑶函数周期的判定
①定义法(试值) ②图像法 ③公式法(利用(2)中结论)
⑷与周期有关的结论
① 或 的周期为 ;
② 的图象关于点 中心对称 周期为2 ;
③ 的图象关于直线 轴对称 周期为2 ;
④ 的图象关于点 中心对称,直线 轴对称 周期为4 ;
8.基本初等函数的图像与性质
⑴幂函数 ⑵指数函数
⑶对数函数 ⑷正弦函数
⑸余弦函数 (6)正切函数⑺一元二次函数
⑻其它常用函数
1 正比例函数②反比例函数
2 函数
9.二次函数
⑴解析式
①一般式
②顶点式
③零点式
⑵二次函数问题解决需考虑的因素:
①开口方向;②对称轴;③端点值;④与坐标轴交点;⑤判别式;⑥两根符号。
⑶二次函数问题解决方法:①数形结合;②分类讨论。
10.函数图象:
⑴图象作法 ①描点法 (特别注意三角函数的五点作图)②图象变换法③导数法
⑵图象变换
1 平移变换
3 伸缩变换
4 对称变换
5 翻转变换
11.函数图象(曲线)对称性的证明
(1)证明函数 图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上;
(2)证明函数 与 图象的对称性,即证明 图象上任意点关于对称中心(对称轴)的对称点在 的图象上,反之亦然;
注:
①曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0;
②曲线C1:f(x,y)=0关于直线x=a的对称曲线C2方程为:f(2a-x, y)=0;
③曲线C1:f(x,y)=0,关于y=x+a(或y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
④f(a+x)=f(b-x) (x∈R) y=f(x)图像关于直线x= 对称;
特别地:f(a+x)=f(a-x) (x∈R) y=f(x)图像关于直线x=a对称;
⑤函数y=f(x-a)与y=f(b-x)的图像关于直线x= 对称;
12.函数零点的求法:
⑴直接法(求 的根);⑵图象法;⑶二分法.
13.导数
⑴导数定义:f(x)在点x0处的导数记作 ;
⑵常见函数的导数公式
⑶导数的四则运算法则:
⑷(理科)复合函数的导数:
⑸导数的应用:
①利用导数求切线:注意:ⅰ所给点是切点吗?ⅱ所求的是“在”还是“过”该点的切线?
②利用导数判断函数单调性:
ⅰ 是增函数;ⅱ 为减函数;
ⅲ 为常数;
③利用导数求极值:ⅰ求导数 ;ⅱ求方程 的根;ⅲ列表得极值。
④利用导数最大值与最小值:ⅰ求的极值;ⅱ求区间端点值(如果有);ⅲ得最值。
14.(理科)定积分
⑴定积分的定义
⑵定积分的性质
⑶微积分基本定理(牛顿—莱布尼兹公式)
⑷定积分的应用:①求曲边梯形的面积:
3 求变速直线运动的路程③求变力做功
望采纳!
对数与指数是什么关系?
求解过程是个逆运算
不过从定义上来讲是没关系的
在乘方a^n中,其中的a叫做底数,n叫做指数,结果叫幂。
如果a^n=b,那么logab=n。其中,a叫做“底数”,b叫做“真数”,n叫做“以a为底b的对数”。
对数函数y=loga(x)与指数函数y=a^x(0
<a
1)互为反函数,从这一点去理解对数和指数可能会更清楚一点。
一、二者的基本定义:
1:对数函数的表达式为:y=loga x,(其中a>0且a≠1,x>0),a为底数,x为真数。
2:指数函数的表达式为:y=a^x,(其中a>0且a≠1),a为底数,x为指数。
二、二者的主要关系:
3:二者中出现的a的取值范围是一致的。
4:在a相同的情况下,对数函数的反函数是指数函数,指数函数的反函数是对数函数,即二者互为反函数。
5:在a相同的情况下,对数函数的定义域(0,+∞)是其对应指数函数的值域;同理,对数函数的值域(-∞,+∞)是其对应指数函数的定义域。
6:在a相同的情况下,对数函数的图象和指数函数的图象是关于直线y=x对称。
</a
什么是对数函数和指数函数?
对数函数和指数函数中各部分的名称如下:
在对数函数中,通常有以下要素:
1. 底数(base):对数函数中的底数指的是对数的基准,决定了对数函数的性质和变化规律。
2. 真数(antilogarithm):对数函数中的真数是指对数运算的结果,即所要求取对数的数值。
3. 对数(logarithm):对数函数中的对数指的是将底数变为真数所需的指数。对数函数的一般表达式为 y = log?(x),表示以底数 a 对 x 进行对数运算。
在指数函数中,通常有以下要素:
1. 底数(base):指数函数中的底数指的是指数运算的基准。
2. 指数(exponent):指数函数中的指数是对底数进行幂运算的数值,决定了指数函数的增长速度和变化规律。
3. 幂(power):指数函数中的幂指的是底数进行指数运算的结果。指数函数的一般表达式为 y = a^x,表示底数 a 的指数运算结果为 y。
需要注意的是,在不同的数学符号和符号约定中,对数和指数函数的表示方式可能会有所不同。常用的对数函数有以 10 为底的常用对数(logarithm,通常用 log 表示)和以 e 为底的自然对数(natural logarithm,通常用 ln 表示)。而常用的指数函数有以 10 为底的指数函数(exponential function,通常用 exp 表示)和以 e 为底的自然指数函数(natural exponential function,通常用 e^x 表示)。
对数和指数函数在数学和科学领域中有广泛的应用,能够描述和解决各种与变化率、增长速度、比例关系等相关的问题。
指数函数与对数函数的区别 指数函数和对数函数有什么异同
1、概念三要素的比较:指数函数和对数函数都有严格的函数形式:和,其中底数都是在且范围内取值的常数;指数函数的指数就是对数函数的对数,由此指数函数的定义域和对数函数的值域相同,都是;指数函数的幂值就是对数函数的真数,由此指数函数的值域和对数函数的定义域相同,都是。
2、图像三特征的比较:从形状上看,指数函数的图像呈现“一撇一捺”的特征,对数函数的图像呈现“一上一下”的特征,当底数相同时它们关于直线对称;从位置上看,指数函数的图像都在轴的上方且必过点,对数函数的图像都在轴的右侧且必过点;从趋势上看,指数函数的图像往上无限增长,往下无限接近于轴,而对数函数的图像往右无限增长,往左无限接近于轴。
3、性质三规律的比较:指数函数和对数函数的单调性都由底数来决定,当时它们在各自的定义域内都是减函数,当时它们在各自的定义域内都是增函数;指数函数和对数函数都不具有奇偶性;它们的变化规律是,指数函数当时,当时(即有“同位大于1,异位小于1”的规律),而对数函数当时,当时(即有“同位得正,异位得负”的规律)。
指数函数与对数函数有什么联系和区别
a^y=x→y=log(a)(x) [y=log以a为底x的对数]这就是将指数转换为对数。
对数函数的一般形式为 y=logax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=a^y。
因此指数函数里对于a存在规定——a>0且a≠1,对于不同大小a会形成不同的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0
<a<1时,a越小,图像越靠近x轴。
对数:
在数学中,对数是对求幂的逆运算,正如除法是乘法的逆运算,反之亦然。这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数。 在简单的情况下,乘数中的对数计数因子。
更一般来说,乘幂允许将任何正实数提高到任何实际功率,总是产生正的结果,因此可以对于b不等于1的任何两个正实数b和x计算对数。
</a<1时,a越小,图像越靠近x轴。
高中数学必修一知识点归纳幂函数和指数函数,对数函数部分的知识点
1.幂函数
(1)定义形如y=xα的函数叫幂函数,其中α为常数,在中学阶段只研究α为有理数的情形
2.指数函数和对数函数
(1)定义
指数函数,y=ax(a>0,且a≠1),注意与幂函数的区别.
对数函数y=logax(a>0,且a≠1).
指数函数y=ax与对数函数y=logax互为反函数.
(2)指数函数y=ax(a>0,且a≠1)与对数函数y=logax(a>0,且a≠1)的图象和性质如表1-2.
(3)指数方程和对数方程
指数方程和对数方程属于超越方程,在中学阶段只要求会解一些简单的特殊类型指数方程和对数方程,基本思想是将它们化成代数方程来解.其基本类型和解法见表1-3.
对数函数和指数函数的区别是什么?
对数中的log和lg都读[lào ge];对数中的ln读[lào in]。log对数是对求幂的逆运算,正如除法是乘法的倒数,反之亦然。 这意味着一个数字的对数是必须产生另一个固定数字(基数)的指数,乘数中的对数计数因子。
对数函数
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。
一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。
其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。