数据可视化案例,数据可视化的16个经典案例
数据可视化案例,数据可视化的16个经典案例详细介绍
本文目录一览: Python数据可视化案例学生必看
超实用的Python数据可视化案例!快来学习吧
Python数据可视化案例
1.折线图
折线图(line chart) 是最基本的图表, 可以用来呈现不同栏
位连续数据之间的关系。绘制折线图使用的是plot.line() 的方
法,可以设置颜色、形状等参数。在使用上,拆线图绘制方法
完全继承了Matplotlib的用法, 所以程序最后也必须调用
plt.show() 产生图
2.散布图
散布图(Scatter Chart) 用于检视不同栏位离散数据之间的
关系。绘制散布图使用的是df.plot.scatter() , 如图8.5所示。
3.直方图、长条图
直方图(Histogram Chart) 通常用于同一栏位, 呈现连续数
据的分布状况, 与直方图类似的另一种图是长条图(Bar
Chart) , 用于检视同一栏位, 如图8.6所示。
4.圆饼图、箱形图
圆饼图(Pie Chart) 可以用于检视同一栏位各类别所占的比
例, 而箱形图(Box Chart) 则用于检视同一栏位或比较不同
栏位数据的分布差异,如图8.7所示。
分享5个经典的数据可视化大屏应用案例
近几年,随着大数据产业的蓬勃发展,数据可视化大屏在各行各业中的应用越来越广泛,教育、医疗、政务、交通运输、能源等等,到处都能看到数据可视化大屏的身影。大面积、炫酷动效、丰富色彩是可视化大屏最为显著的特点,大屏易在观感上给人留下震撼印象,便于营造某些独特氛围、打造仪式感。大屏数据可视化目前主要有信息展示、数据分析及监控预警三大类。下面我们来看看5个经典的数据可视化大屏应用案例。
法院行政案件大数据分析系统包含了结案特征分析、当事人分析、实效分析和管辖改革成效。通过收案/结案的数量和增幅,分别用时间、领域、地区等维度分析案件变化趋势,从结构方式、矛盾化解情况、重点质效指标、舆情热点案件、败诉案件和败诉案件信息来分析结案特征,用信访案件变化趋势和分布情况针对机关滥用职权情况来特别分析。不同分析角度分析不同数据,实现案件大数据全方位解读。
智慧公安实战应用包括了智慧搜索、智慧建模、智慧服务、智慧监督、智慧标签、智慧小区、智慧管控以及智慧监测,实现个人档案的查询,同时关联社会关系和活动轨迹并绘制出关系网络图,通过建模显示各模型使用情况和资源访问量、访问趋势,进行在线业务分析,各类警务案件指标分析,根据标签标准生成人员画像,通过重点人员异常轨迹进行警情监测,根据热点追踪进行传播路径分析,实现公安智慧化管理。
为了展现学校的实力,分别从学校概况、师资队伍、教学资源、科学研究、学生发展、就业情况和日常运营的角度来展示。学校概况包括办学条件、师生情况、学科专业和师资力量,再通过荣誉称号、教师编制类别、教职工人数、研究生导师数、高层次人才、职称分布、最高学位分布等展示师资队伍,用教学用房面积、教学经费投入、教学科研仪器、图书资料等来表现教学资源,用著作成果、获奖成果、论文与专利等展现科学研究。
首页展示共享方式占比、共享属性占比、数据趋势、热门事项、和单位排名等,基础库包括人口库、法人库,支持搜索刷新,同时展示库的基本信息和申请动态,平台总体统计展示平台各类指标数据的访问、更新情况,数据服务动态展现区数据中心和市数据中心等的数据实时交互状况,实现数据全方位全时段把控。
用医师日均工作量、病床使用率、门诊病人次均诊疗费用、出院病人人均医药费用、急诊人次、出院人数来分析医疗服务情况,病人分布情况可通过数据联动实现对应地图刷新,从妇幼保健、计划免疫、卫生监督、案件查处分类、居民健康档案、历年建档人数、建档率、出院病人前十疾病的角度分析公共卫生,实现医疗卫生智慧化管理。
数据可视化大屏的应用远远不止以上几个方面,如果想要对数据可视化大屏做深入的了解,可以关注 华宇智能数据将于9月17日20:00在微吼的直播《酷炫大屏如何SHOW到飞起?》 ,届时华宇资深可视化领域专家将围绕以下几个方面进行讨论与交流:
1、大屏的典型应用场景及价值
2、亿信多个行业大屏效果展示
3、教你制作出拍手称赞的大屏
4、大屏制作小能手之酷屏介绍
有哪些比较高级的数据可视化案例?
业内数据可视化可圈可点的案例越来越多了,简单的分享几个:
1. “美国大选”数据可视化
在美国大选期间,美国媒体做了不少与之相关的数据报道,让我们来回顾一下,他们是如何将美国大选的数据可视化的吧!
下图为各洲“选举人票”的占比情况。作者设计了两种表现方法,一是以“选举人票”的分布做为底图,一是直接以美国地图作为底图。除此图上方双方选举人票总体数量对比外,鼠标移至各洲上方还能显示各洲“选举人票”数量及对希拉里与特朗普的支持比例。
2、地理信息可视化
百度迁徙图是近年来非常流行的一种地理信息可视化,可以通过连线动态查看人口流向。此处给大家绘制一幅动态航班图的地理信息可视化图,可查看动态效果。
3、企业经营数据可视化
袋鼠云联合中国美术学院一起,为中国最知名的品牌之一——贵州茅台集团定制的大数据可视化展示解决方案,亮相2018年数博会,实时展示茅台集团各电商平台经营概况、茅台消费者的用户画像、电商订单实时物流状态等。
数据可视化的16个经典案例
[数据可视化]
本文编译自:Ross Crooks
数据可视化是指将数据以视觉的形式来呈现,如图表或地图,以帮助人们了解这些数据的意义。通过观察数字、统计数据的转换以获得清晰的结论并不是一件容易的事。而人类大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释数据模式、趋势、统计数据和数据相关性,而这些内容在其他呈现方式下可能难以被发现。
数据可视化可以是静态的或交互的。几个世纪以来,人们一直在使用静态数据可视化,如图表和地图。交互式的数据可视化则相对更为先进:人们能够使用电脑和移动设备深入到这些图表和图形的具体细节,然后用交互的方式改变他们看到的数据及数据的处理方式。
我们必须用一个合乎逻辑的、易于理解的方式来呈现数据。但是,并非所有数据可视化作品的效果都一样好。那么,如何将数据组织起来,使其既有吸引力又易于理解?让我们通过下面的16个有趣的例子获得启发,它们是既注重风格也注重内容的数据可视化经典案例。
1:为什么会有“巴士群”现象
这里有一个关于复杂数据集的很好的例子,它看起来感觉像一个游戏。在这个例子里,Setosa网站为我们呈现了“巴士群”现象是如何发生的,即当一辆巴士被延迟,就会导致多辆巴士在同一时间到站。
只用数字讲述这个故事是非常困难的,所以取而代之的是,他们把它变成一个互动游戏。当巴士沿着路线旋转时,我们可以点击并按住一个按钮来使巴士延迟。然后,我们所要做的就是观察一个短暂的延迟如何使巴士在一段时间以后聚集起来。
2:世界上的语言
这个由DensityDesign设计的互动作品令人印象深刻,它将世界上众多(或者说,我们大多数人)语言用非语言的方法表现出来,一共有2678种。
这件作品可以让你浏览使用共同语言的家庭,看看哪些语言是最常用的,并查看语言在世界各地的使用范围。这是一种了不起的视觉叙事方法:将一个有深度的主题用一种易于理解的方式进行解读。
3:按年龄段分布的美国人口百分比
应该用什么方式去呈现一种单一的数据?这是一个令人信服的好榜样。
Pew Research创造了这个GIF动画,显示人口统计数量随着时间推移的的变化。这是一个好方法,它将一个内容较多的故事压缩成了一个小的动图包。此外,这种类型的微内容很容易在社交网络上分享或在博客中嵌入,扩大了内容的传播范围。
4:NFL(国家橄榄球联盟)的完整历史
体育世界有着丰富的数据,但这些数据并不总是能有效地呈现。然而,FiveThirtyEight网站做得特别好。
在下面这个交互式可视化评级中,他们对国家橄榄球联盟史上的每一场比赛计算“等级分” – – 根据比赛结果对球队实力进行简单的衡量 。总共有超过30,000个评级,观众可以通过比较各个队伍的等级分来了解每个队伍在数十年间的比赛表现。
5:Google Flights 上的美国感恩节
下面是将一段时间内在空中移动的物体进行可视化的好方法。这是由Google Trends驱动的项目,它跟踪感恩节前出发、到达和穿越美国的航班。
可视化始于当天很早的时间,随着时间的推移,像播放电影一样显示在全国各地飞行中的航班。不需要显示时间外的任何数字,观众即可以看到当天哪段时间是国际航班、国内航班以及往返于全国各地不同枢纽的航班的热门时间。
6:是什么真正造成了全球变暖?
我们都知道,“不要只简单地展示数据,讲个故事吧”。这正是彭博商业正在做的可视化 ——用互动的方式来讲述故事的来龙去脉。。
此图的关键是要反驳用自然原因解释全球变暖的理论。首先你会看到从1880年至今观测到的温度上升情况。为了使故事内容更加丰富,当你向下滚动时,这个可视化图会让你清楚的了解到相较于已被观测到的因素,造成全球变暖的不同因素到底有多少。作者希望观众能够得到非常清晰的结论。
7:在叙利亚,谁和谁在战斗?
许多不同的团体之间的关系可能令人很难理解 – 尤其是当有11个这样的团体存在的时候。这些团体之间有的结盟,有的敌对,反之亦然。这让人难以理解。
但是,Slate网站通过表格的形式和熟悉的视觉表达,将这些数据简化为一种简单的、易于理解和可交互的形式。观众可以点击任一张脸来查看双方关系的简要描述。
8:最有价值的运动队
这是通过叠加数据来讲述深层故事的一个典型例子。
这个交互由Column Five设计,受福布斯“2014年最具价值的运动队50强”名单得到的启发。但是它不仅将列表可视化,用户还可以通过它看到每支队伍参赛的时间以及夺得总冠军的数量。这为各队的历史和成功提供了更全面的概况信息。
9:美国风图
下面是一个类似感恩节航班的可视化图,除了图中显示的时刻,它还能实时显示美国本土的风速和风向。
它是直观设计的一个很好的案例:风速用线条移动的快慢来表示,方向通过线条移动的路径来表示。它会即时显示美国风向的总体趋势,无需任何数字,除非你在地图上点击鼠标。另外,使用时设定最多两个变量会使它更容易操作。
10:政治新闻受众渠道分布图
据Pew研究中心称,当设计师在信息内容很多又不能删的时候,他们通常会把信息放到数据表中,以使其更紧凑。但是,他们在这里使用分布图来代替。
为什么呢?因为分布图可以让观众在频谱上看到每个媒体的渠道。在分布图上,每个媒体的渠道之间的距离尤为显著。如果这些点仅仅是在表中列出,那么观众就无法看到每个渠道之间的对比效果。
11:著名创意人士的日程安排
这个数据可视化图是用奇特的想法描绘出的一个简单概念。这个表格利用Mason Currey的《日常惯例》一书中的信息展示了那些著名创意人士的日程安排,解读其时间和活动安排。这不仅是一个数据分析的例子(因为你可以通过单独的活动来浏览日程安排),也是一个品牌宣传的佳作。
12:今年发生了哪些新闻?
最好的数据可视化方式,就是用直观和美丽的方式传达信息。Echelon Insights致力于这一方式,将2014年Twitter上最受关注的新闻进行了可视化。
1亿8450万条推文是什么样子?就是如下图所示的艺术品。
13:问题的深度
当你想强调规模的时候,静态数据可视化是表达你的观点的极佳方式。下面这张来自《华盛顿邮报》的信息图长得令人难以置信…这是故意的。他们在图中展示了一架飞机可以探测到的深海信号是多么的深,通过比较飞机的探测深度与高层建筑、已知哺乳动物的最大深度、泰坦尼克号沉船的深度等。这是简单的视觉效果和颜色梯度的极佳使用方式。
最后,将数据添加到新闻报道中(文中为失踪的马航)是提供背景的好方式。
14:前沿预算
上述图表相对简单,以下是创造设计精致的、传递大量数据的图表的方法。秘诀何在?——用简单和干净的格式,便于读者理解数据。
这个由GOOD Magazine 和 Column Five制作的图表,解读了NASA的五年预算,显示资金将怎么花、花在哪里。此外,它还有一个主题设计,这真是一个全面成功的作品!
15: Kontakladen慈善年报
不是所有的数据可视化都需要用动画的形式来表达。当现实世界的数据通过现实生活中的例子进行可视化,结果会令人惊叹。设计师Marion Luttenberger把包含在Kontakladen慈善年报中的数据以一种独特的方法表现出来。
该组织为奥地利的吸毒者提供支持,所以Luttenberger就通过现实生活中的视觉元素来宣传他们的使命。例如,这辆购物车的形象表现出受助者每一天可以负担得起多少生活必需品。
16:奥地利太阳能年报
虽然有许多方法都能使数据可视化,但是其中,使用真实信息主体去创建数据可视化作品的做法非常了不起。这份来自Austria Solar的年度报告,通过在页面上使用太阳光感墨水,用真正的太阳能给公司数据赋予生命。
一句话总结:他们是天才。
114 11 个案例掌握 Python 数据可视化--美国气候研究
自哥本哈根气候会议之后,全球日益关注气候变化和温室效应等问题,并于会后建立了全球碳交易市场,分阶段分批次减碳。本实验获取了美国 1979 - 2011 年间 NASA 等机构对美国各地日均最高气温、降雨量等数据,研究及可视化了气候相关指标的变化规律及相互关系。 输入并执行魔法命令 %matplotlib inline, 并去除图例边框。
数据集介绍: 本数据集特征包括美国 49 个州(State),各州所在的地区(Region),统计年(Year),统计月(Month),平均光照(Avg Daily Sunlight),日均最大空气温度(Avg Daily Max Air Temperature ),日均最大热指数(Avg Daily Max Heat Index ),日均降雨量(Avg Daily Precipitation ),日均地表温度(Avg Day Land Surface Temperature)。 各特征的年度区间为:
导入数据并查看前 5 行。
筛选美国各大区域的主要气候指数,通过 sns.distplot 接口绘制指数的分布图。
从运行结果可知: 光照能量密度(Sunlight),美国全境各地区分布趋势大致相同,均存在较为明显的两个峰(强光照和弱光照)。这是因为非赤道国家受地球公转影响,四季光照强度会呈现出一定的周期变化规律; 从地理区位能看出,东北部光照低谷明显低于其他三个区域; 日均最高空气温度(Max Air Temperature),美国全境各地区表现出较大差异,东北部和中西部趋势大致相同,气温平缓期较长,且包含一个显著的尖峰;西部地区平缓期最长,全年最高温均相对稳定;南部分布则相对更为集中; 日均地表温度(Land Surface Temperature),与最高空气温度类似,不同之处在于其低温区分布更少; 最大热指数(Max Heat Index),西部与中西部分布较为一致,偏温和性温度,东北部热指数偏高,南部偏低; 降雨量(Precipitation),西部明显偏小,南部与东北部大致相同,中西部相对较多。
结合地理知识做一个总结: 东北部及大多数中西部地区,属于温带大陆性气候,四季分明,夏季闷热,降雨较多。 西部属于温带地中海气候,全年气候温和,并且干燥少雨,夏季气候温和,最高温度相对稳定。 南部沿海一带,终年气候温暖,夏季炎热,雨水充沛。
按月计算美国各地区降雨量均值及标准偏差,以均值 ± 一倍标准偏差绘制各地区降雨量误差线图。
从运行结果可知: 在大多数夏季月份,西部地区降雨量远小于其他地区; 西部地区冬季月降雨量高于夏季月; 中西部地区是较为典型的温带大陆性气候,秋冬降雨逐渐减少,春夏降雨逐渐升高; 南部地区偏向海洋性气候,全年降雨量相对平均。
需要安装joypy包。
日均最高气温变化趋势 通过 joypy 包的 joyplot 接口,可以绘制带堆积效应的直方分布曲线,将 1980 年 - 2008 年的日均最高温度按每隔 4 年的方式绘制其分布图,并标注 25%、75% 分位数。
从运行结果可知: 1980 - 2008 年区间,美国全境日均最高温度分布的低温区正逐渐升高,同时高温区正逐渐降低,分布更趋向于集中; 1980 - 2008 年区间,美国全境日均最高温度的 25% 分位数和 75% 分位数有少量偏离但并不明显。 日均降雨量变化趋势 同样的方式对降雨量数据进行处理并查看输出结果。
筛选出加州和纽约州的日均降雨量数据,通过 plt.hist 接口绘制降雨量各月的分布图。
从运行结果可知: 加州地区降雨量多集中在 0 - 1 mm 区间,很少出现大雨,相比而言,纽约州则显得雨量充沛,日均降雨量分布在 2 - 4 mm 区间。
直方图在堆积效应下会被覆盖大多数细节,同时表达聚合、离散效应的箱线图在此类问题上或许是更好的选择。 通过 sns.boxplot 接口绘制加州和纽约州全年各月降雨量分布箱线图.
从箱线图上,我们可以清晰地对比每个月两个州的降雨量分布,既可以看到集中程度,例如七月的加州降雨量集中在 0.1 - 0.5 mm 的窄区间,说明此时很少会有大雨;又可以看到离散情况,例如一月的加州,箱线图箱子(box)部分分布较宽,且上方 10 mm 左右存在一个离散点,说明此时的加州可能偶尔地会出现大到暴雨。
视觉上更为美观且简约的是摆动的误差线图,实验 「美国全境降雨量月度分布」 将所有类别标签的 x 位置均放于同一处,导致误差线高度重合。可通过调节 x 坐标位置将需要对比的序列紧凑排布。
从输出结果可以看出,加州冬季的降雨量不确定更强,每年的的十一月至次年的三月,存在降雨量大,且降雨量存在忽多忽少的现象(误差线长)。
上面的实验均在研究单变量的分布,但经常性地,我们希望知道任意两个变量的联合分布有怎样的特征。 核密度估计 , 是研究此类问题的主要方式之一, sns.kdeplot 接口通过高斯核函数计算两变量的核密度函数并以等高线的形式绘制核密度。
从运行结果可知: 加州在高温区和低降雨期存在一个较为明显的高密度分布区(高温少雨的夏季); 纽约州在高温及低温区均存在一个高密度的分布区,且在不同温区降雨量分布都较为均匀。
将美国全境的降雨量与空气温度通过 plt.hist2d 接口可视化。
从运行结果可知: 美国全境最高密度的日均高温温度区域和降雨量区间分别为,78 F (约等于 25 C)和 2.2 mm 左右,属于相对舒适的生活气候区间。 美国全境降雨量与空气温度的关系-核密度估计 在上面实验基础上,在 x, y 轴上分别通过 sns.rugplot 接口绘制核密度估计的一维分布图,可在一张绘图平面上同时获取联合分布和单变量分布的特征。
美国全境降雨量与空气温度的关系-散点分布和直方分布 sns.jointplot 接口通过栅格的形式,将单变量分布用子图的形式进行分别绘制,同时通过散点图进行双变量关系的展示,也是一种较好的展现数据分布的方式。
上面两个实验研究了双变量分布的可视化,以下研究 3 变量聚合结果的可视化。 通过 sns.heatmap 接口可实现对透视数据的可视化,其原理是对透视结果的值赋予不同的颜色块,以可视化其值的大小,并通过颜色条工具量化其值大小。
上面的两个实验可视化了各州随年份日均最高温度的中位数变化趋势,从图中并未看出有较为显著地变化。 以下通过 t 检验的方式查看统计量是否有显著性差异。stats.ttest_ind 接口可以输出 1980 年 与 2010 年主要气候指数的显著性检验统计量及 p 值。
从运行结果可以看出: 检验结果拒绝了降雨量相等的原假设,即 1980 年 与 2010 年两年间,美国降雨量是不同的,同时没有拒绝日均日照、日均最大气温两个变量相等的原假设,说明气温未发生显著性变化。
数据可视化案例与工具大放送
数据可视化案例与工具大放送
1.财政数据可视化大集合
233个财政数据可视化作品大集合,出自开放知识基金政策和研究方向的负责人Jonathan Gray之手,他目前正在做财政数据可视化有关的研究。
他将全球好的财政数据可视化作品收集在一起,并在谷歌表格上发布共享。这些作品有出自媒体、民间机构和公共机构之手,以可视化手法呈现世界各地的公共财政数据。
半岛电视台在2014年发表了中国在非洲投资的可视化作品。2000到2012年间,中国政府在非洲投资项目超过1900个,承诺投资超过1280亿美金。然而仅有59%的项目的状态是“施工中”或“已完成”,剩下的众多项目仍处在承诺或规划阶段。
读者可以直观地看到中国在非洲各国投资项目的数量、投资金额大小,以及中国在非洲投资大坝、体育馆、矿产和高速公路等项目的情况。
查看地址:http://www.aljazeera.com/indepth/interactive/2014/03/interactive-china-african-spending-spree-2013800799136.html
政府的预算报告也是一个亮点。新加坡和香港政府的财政预算也分别被新加坡《海峡时报》和香港《南华早报》以可视化方式呈现,作者可以很直观地看到财政预算的剖析。
查看地址:
1.《海峡时报》“How the Singapore Government is spending its dollars in 2015”:
2.《南华早报》“Deconstructing the 2014-15 Hong Kong Budget”:
那么Jonathan Gray是何许人也?看过《数据新闻手册》的人应该对他不陌生。他是该手册的贡献者之一。在手册其中一章节里介绍公共开销案例。2007年,Jonathan Gray向开放知识基金会提议做“我的钱去哪儿了”项目,让用户用更直观的开源工具了解不同来源的公共数据,推动信息透明。
《数据新闻手册》下载地址>>>
开源可视化工具大放送想知道灵动炫酷的可视化效果怎么做?怎么从零基础开始学?软件开发师、开源支持者Nitishi Tiwari撰文重点推荐了八款数据可视化的开源工具 (点击左边即可看到工具条目),一解众忧。如果觉得不过瘾,点击文末链接,有50款工具推荐。
Data Wrapper:由欧洲的新闻学院开发,以便新闻机构做数据可视化作品。该工具基于图形用户界面(GUI),可以用简单四步绘图。
Chart JS:简洁的图表库。在生成图表之前,需要把函数库加进前端代码中,之后可以从函数库的应用程序编程接口(API)加图表,赋值。这款工具适合想要精确调整图表外观的人。它不适合想用现成工具用户。
Charted:由Medium的产品科学组开发,是最简便的在线表格工具之一。只需粘贴谷歌表格或.csv文件,工具就会抓取数据,生成表格。Charted每三十分钟抓取数据,及时更新。
D3:是数据驱动文件(data-driven documents)的缩写,是一个JavaScript函数库。它使用数据创造并控制在网络浏览器里运行的交互图形,必须嵌入在html网页中,依赖矢量图形(SVG), 层叠式样式表(CSS3)等html的工具展示图形。因为需要编写代码,更适合掌握此项技能的数据新闻程序员们。
Dygraphs是一款基于JavaScript的函数库,十分灵活。这款工具的优势是可以处理大的数据集,并为终端用户生成互动数据。
Raw:基于网页的可视化工具。用户可以粘贴数据,在几步内生成图表。
Timeline: 用来做时间轴。按照规定格式将数据放在谷歌表格中,之后Timeline工具生成并发布。然后再网页上嵌入代码即可。
Leaflet:一款轻便、适合移动端用户的JavaScript函数库,用来制作互动地图。
3. D3案例:2490个例子!2490个例子?是的你没有看错,就是上文介绍过的开源可视化新锐D3,它的一大好处是让用户能轻松添加、修改和删除数据元素。有业界良心的网友在网上收集了多达2490个D3的图表例子分享给大家。打开链接,你会发现图表已按照不同样式类别归类,在页面左边可以分类查看,也可以在左上方的搜索框里查询,或是浏览右边的缩略图(点击可见大图)。在已有分类的1000个案例中,以地图、网状图、柱状图、折线图等类型居多。任何用户都能在谷歌表格添加案例、题目、超链接、作者、可视化类型等,简单易行。
以上是小编为大家分享的关于数据可视化案例与工具大放送的相关内容,更多信息可以关注环球青藤分享更多干货
数据可视化常用的五种方式及案例分析
概念借助于图形化的手段,清晰、快捷有效的传达与沟通信息。从用户的角度,数据可视化可以让用户快速抓住要点信息,让关键的数据点从人类的眼睛快速通往心灵深处。 数据可视化一般会具备以下几个特点:准确性、创新性 和 简洁性。
常用五种可视化方法
下面从最常用和实用的维度总结了如下5种数据可视化方法,让我们来一一看一下:
一、面积&尺寸可视化对同一类图形(例如柱状、圆环和蜘蛛图等)的长度、高度或面积加以区别,来清晰的表达不同指标对应的指标值之间的对比。
这种方法会让浏览者对数据及其之间的对比一目了然。制作这类数据可视化图形时,要用数学公式计算,来表达准确的尺度和比例。
a: 天猫的店铺动态评分天猫店铺动态评分模块右侧的条状图按精确的比例清晰的表达了不同评分用户的占比。从下图中我们第一眼就可以强烈的感知到5分动态评分的用户占绝对的比例。
b: 联邦预算图如下图,在美国联邦预算剖面图里,用不同高度的货币流清晰的表达了资金的来源去向,及每一项所占金额的比重。
c: 公司黄页-企业能力模型蜘蛛图如下图,通过蜘蛛图的表现,公司综合实力与同行平均水平的对比便一目了然。
二、颜色可视化
通过颜色的深浅来表达指标值的强弱和大小,是数据可视化设计的常用方法,用户一眼看上去便可整体的看出哪一部分指标的数据值更突出。a: 点击频次热力图比如下面这张眼球热力图,通过颜色的差异,我们可以直观的看到用户的关注点。
b: 2013年美国失业率统计在图中可以看到,通过对美国地图以州为单位的划分,用不同的颜色来代表不同的失业率等级范围,整个的全美失业率状况便尽收眼底了。
c: 美国手机用户城市分布图中红点是用iPhone的人,绿点是用安卓的人。这两张在微博上看到的图,第一张是美国一个城市的一览,第二张图特写了纽约的市中心,尤其是曼哈顿地区。我们可以看到在市中心和主干道的人用iPhone居多,而用安卓的人都在郊区。这也引起了人们的热议,有的说在美国富人都住郊区别墅,所以富人爱用安卓手机;有的反驳说曼哈顿地区的人几乎都用iPhone,说明富人喜欢用iPhone手机。不管结论如何,都足以说明用户都被这些图所吸引,所以可视化的方式效果真的很直观。
注:科学家统计了2年里30亿条含有地理数据的twitter推文,根据客户端总结出来的数据。
三、图形可视化在我们设计指标及数据时,使用有对应实际含义的图形来结合呈现,会使数据图表更加生动的被展现,更便于用户理解图表要表达的主题。
Examples:
a: iOS手机及平板分布如下图所示,当展示使用不同类型的手机和平板用户占比时,直接用总的苹果图形为背景来划分用户比例,让用户第一眼就可以直观的看到这些图是在描述苹果设备的,直观而清晰。
b: 人人网用户的网购调查下图可以看出,该数据可视化的设计直接采用男性和女性的图形,这样的设计让分类一目了然。再结合了颜色可视化(左面蓝色右面粉色),同时也采用了面积&尺寸可视化,不同的比例用不同长度的条形。这些可视化方法的组合使用,大大加强了数据的可理解性。
四、地域空间可视化当指标数据要表达的主题跟地域有关联时,我们一般会选择用地图为大背景。
这样用户可以直观的了解整体的数据情况,同时也可以根据地理位置快速的定位到某一地区来查看详细数据。
a: 美国最好喝啤酒的产地分布下图中,通过以美国地图为大背景,清晰的记录了不同州所产啤酒在1987-2007年间在美国啤酒节中获得的奖牌累计总数。再辅以颜色可视化的方法,让用户清晰的看到美国哪些州更盛产好喝的啤酒。
五、概念可视化通过将抽象的指标数据转换成我们熟悉的容易感知的数据时,用户便更容易理解图形要表达的意义。
a: 厕所贴士下图是厕所里贴在墙上的节省纸张的环保贴士,用了概念转换的方法,让用户清晰的感受到员工们一年的用纸量之多。
如果只是描述擦手纸的量及堆积可达高度,我们还没有什么显性化概念。但当用户看到用纸的堆积高度比世界最高建筑还高、同时需砍伐500多颗树时,想必用户的节省纸张甚至禁用纸张的情怀便油然而生了。所以可见用概念转换的方法是多么的重要和有效。
b: Flickr云存储空间达1TB的可视化描述Flickr对云存储空间升至1TB确实是让人开心的事情,但相信很多人对这一数量级所代表的含义并不清晰。
所以Flickr在宣传这一新的升级产品时,采用了概念可视化的方案。从下图可以看出,用户可以动态的选择照片的大小,之后Flickr会采用动态交互的方式计算和显示出1TB能容纳多少张对应大小的图片。这样一来,用户便有了清晰的概念,知道这1TB是什么量级的容量了。
注意事项在总结了常见维度的数据可视化方法和范例之后,要再次总体强调下做数据可视化设计时的注意事项,总结了三点如下:
1)设计的方案至少适用于两个层次:一是能够整体展示大的图形轮廓,让用户能够快速的了解图表所要表达的整体概念;之后再以合适的方式对局部的详细数据加以呈现(如鼠标hover展示)。
2)做数据可视化时,上述的五个方法经常是混合用的,尤其是做一些复杂图形和多维度数据的展示时。
3)做出的可视化图表一定要易于理解,在显性化的基础上越美观越好,切忌华而不实。
总结:作为设计师,除了掌握方法来有针对性的设计之外,还要在平时多留心积累素材,同时培养自己的创造力和专业素养,保持一颗好奇心,才能真正的设计出样式精美又实用的数据可视化图表。
你最欣赏的数据可视化的案例是什么
首先分享一下数据可视化这个概念,数据可视化是关于数据视觉表现形式的科学技术研究。其中,这种数据的视觉表现形式被定义为,一种以某种概要形式抽提出来的信息,包括相应信息单位的各种变量和属性。数据化,目前被广泛应用,前段时间我还和我老公商量要去学大数据。因为现在人类的大脑对视觉信息的处理优于对文本的处理——因此使用图表、图形和设计元素,数据可视化可以帮你更容易的解释趋势和统计数据。目前大数据是一个很热的行业。
下面分享一个我最近听到最对也最吸引我的案例。
交互数据可视化的实例
为什么会有“巴士群”现象。这里有一个关于复杂数据集的很好的例子,它看起来感觉像一个游戏。在这个例子里,Setosa网站为我们呈现了“巴士群”现象是如何发生的,即,当一辆巴士被延迟,就会导致多辆巴士在同一时间到站。只用数字讲述这个故事是非常困难的,所以取而代之的是,他们把它变成一个互动游戏。当巴士沿着路线旋转时,我们可以点击并按住一个按钮来使巴士延迟。然后,我们所要做的就是观察一个短暂的延迟如何使巴士在一段时间以后聚集起来。
一些人知道大数据的真正含义,然而其他人声称自己懂大数据,只是为了让他们看起来并不低人一等。尽管大数据是一个热门话题,但是对许多企业和数据专业人员来说,它仍然很难理解。不清楚其价值所在,就更谈不上该如何利用了。
目前阿里云在这方面做得比较好检测各种Web应用系统,检测范围支持国际主流的OWASP Top10和WASC分类。实现效果。
数据可视化 Data Visualization 的原则和案例
原文地址: medium 原文 ? ? UXren的翻译
“仪表板”、“大数据”、“数据可视化”、“数据分析”——越来越多人和企业,开始运用他们的数据来做一些有趣的事情。 Telling the story with data!? Data-heavy interfaces. 很多人已经讨论过这个议题,我会围绕创作过程中最具影响力的部分。
一、用户不同,数据不同 Different users, different data
任何时候设计一套Complex system,inevitably要为很多用户users 和角色persona 进行设计.
总裁(Executives), 经理(managers), and 分析师 (analysts) are common personas that each have their own workflows and data needs.不同的角色有 完全不同的视角(perspective)and generating insights。
关于角色,重要的一点是预先确定好,围绕它们来组织信息结构与线框图 wireframes and IA should be around target persona
下面是我们去年做的一款健康报告应用的最终成品。这套系统有着不同的用户群,他们各自都需要不同的数据管理。 创建了关键角色后,我们每次评审会将它们放在旁边 。
做presentation的时候,在满屋子客户面前展示作品是件难事。无论是在解释线框图、流程图,还是就视觉设计进行讨论,都很难让每个人跟上你的观点。 通过角色来组织作品,会防止你(和客户)在这些讨论中跑题。
二、页面layout pattern
页面的layout很重要,如果一开始你就让用户找不到自己想要的 start with distractions, ?audience 很难 seeing not just what each element is about, but the focus of the entire passage.
1) 重要的 Logical layout organizing principle : The Inverted Pyramid?
–The most important and substantial information is at the top,
–followed by the significant details that h elp you understand the overview above
them;
–and at the bottom you have general and background information, which will contain
much more detail and allow the reader or viewer to dive deeper
a good book talking about style 😕 “ Style: The Basics of Clarity and Grace ”.
2) ?最小化原则 Minimalism: Less is More
每个页面不应超过5-9个chart,过多的内容会让用户分心。?Each dashboard should contain no more than 5-9 visualizations. ?
?通过分层来减少视觉clutter ( avoid visual clutter by layering )
the data by using filters and hierarchies (e.g. instead of having one indicator for amount of
sales in North America and one for South America, give the user the option to apply a filter which changes the same indicator between one and the other)?
?如果真的有很多chart,只需要将他们分开几个页面即可 simply by breaking your dashboard into two or more separate dashboards.
3)不要让形式强过于内容 over-designed visualizations that aren't appropriate for the data.
**Spend your energy on selling the message, not the medium**
**Your job is to solve a problem, not make a picture**
三、选择正确的图形
最糟的是——这些“坏习惯”似乎在成倍增加。随处可见本应是饼形图的面积图,还有本应该是柱状图的曲线图。让我们一起来制止这些设计……下面这些建议有助于你正确对待数据
3.1 始于数据
未经处理的 原始数据表格 一点也没有吸引力。但它是 最佳的起点 。它帮你开始 思考数据中有哪些变量可用variables available,这些变量数据如何关联various data entities are related。
Checking out these great resources to help uncover interesting connections:
Designing Better charts with Google Sheets, Illustrator, and Sketch
Tableau —?This tool is one of the best out there, but very expensive. *拆解Tableau的文章以后会有* ?Tableau的视频链接
在整个过程中,这部分并没有灵丹妙药。别对深入研究数据心存恐惧,试着混合搭配不同变量,创建基本图表。这需要时间,但它是值得的。我想到的一些绝妙点子,都来自这些原始数据文件的拼拼凑凑。
3.2 处理离散数据和连续数据
每一种图表都有他最擅长表达的领域,数据也可以分类为:连续型数据和离散型数据。 It’s easy to pick charts that look good in your composition and hope your data works out. ?
数据的种类 Types of data + 用户的目的 user's purpose ?== which type of chart to choose.
离散数据 Discrete Data —?distinct values you can count. For example, a number of goals scored or Facebook likes.
连续数据 Continuous Data ——任何范围值 range of value。比如一季的降雨量,或一个人的身高体重。
?So, how to choose the correct pattern ?
1) ? Compare different discrete values over a period of time?comparison between different value across time or different categories.
? Bar Chart (length and end point of bar )清楚表达数据之间关系;说明每一个的具体数值;容易比较数值;容易看出趋势;
2) View trending ??
? ? Line-chart
3) Analysis the percentage proportion, specially " part –to- whole" relationship ??
? ?Pie charts are usually used to showrelational proportions between data and use arc length
to present the percentage of total.understand the relative contributions of each part to the whole清楚表达数据之间关系-尤其是part of whole;不能说明每一个的具体数值;不容易比较数值;无法看出趋势;(it's hard to compare slice)
4)view where/which area has the highest population , usage
? ? Distribution chart?
5) 观察几个不同的特点,技能等的分布情况 ( character strength )
? ? ? Radar Chart
“ The Wall Street Journal: Guide to information Graphics ” by Dona Wong. 帮我凝练了其中精髓。真希望几年前我就有这本书。这是本无价的参考书,帮你选用合适的图表,阐明信息展现的行为准则。
3.3 ?选择哪个analysis patterns?回答几个问题:(不需要都满足,根据使用条件)
–Clearly indicates how the values relate to one another, which in this case is a part-to-whole relationship - the number of deaths per cause, when summed, equal all deaths during the
year.清楚表达了数据间的关系
–Represents the quantities?accurately.表达了具体的数值
–Makes it easy to compare the quantities.容易比较数值
–Makes it easy to see the ranked order of values, such as from the leading cause of death to the least.容易看出趋势或者顺序
–Makes obvious how people should use the information - what they should use it to accomplish - and encourages them to do this.明显让人明白如何使用数据
3.4 Dashboard 的目的:
1) 化繁为简,将抽象数据变成直接易懂的物理形态 To translate abstract data into easily understanding physical attribute (length, size, shape..), for better analysis and understand. –Make complex simple?
2)Explain Data to Solve Specific Problems : (解释数据) – answer view’s question
3)Explore Large Data Sets for Better Understanding (数据挖掘)
4)对于很直接的,常用的结果,直接用文字表达出来
四、基本的或定制化的图形 Basic vs. Custom visualizations
As the designer of these data-rich systems you have to constantly ask yourself “ should I let users to customize the chart ? Or should I use tried-and-true charts to articulate the message?”. 是可以让用户自我定制?还是采用统一的模板呈现?
最近无意中读到这篇来自 37 Signals的文章——?只要3种图表就够了 。(?)作者强烈表达一个观点,图形的“有效性”胜过它的视觉特征。我非常赞同文中这一观点。不过,我觉得他的观点代表着一种极端实用主义的视角。我相信定制化的图形通常也能提升数据的易用性,同时独具一格引人入胜。
然而,作为专业的设计师,我希望我的作品看起来和感觉上是独特且有用的。
比如,纽约时报做得很好,通过定制化的交互式图形,来为他们的文章添彩。可以在这里看到更多他们的作品。我们来看一些完美的定制化图表案例:这个案例对曲线图做了调整,让人“一睹”那些支撑图表的基本数据。(puts a twist on a line graph by offering a “peek” into the underlying data driving the chart. )结合了distribution chart 和line chart,distribution 作为背景。
五、让用户花 < 5秒钟,找到自己想要的
5.1 ?Dashboard should be able to answer your most frequently asked business questionsat a glance. Ad-hoc investigation will obviously take longer; but the most important metrics,the ones that are most frequently needed for the dashboard user during her workday, should immediately ‘pop’ from the screen.
答案是:这样人们才能使用——做决策、调研、预测未来,什么都行。关键是,用户不会沉浸于你所选的漂亮色彩,他们是来工作的。
我的建议是——在你排布好页面一切就绪后,问问自己“那又如何?”。看看每个图表、组件、表格,仔细考虑人们从中能获取到什么。
通常你会得出这样的结论,“这些都不重要”,这就意味着要减少或是重新思考。
这在我身上发生过好几次——我创作了复杂漂亮的仪表板,包含了一系列时尚的图表、饼形图,还有成千上万数据点构成的地图。
但总是被客户质疑“我只想知道这样有效吗……我要的东西在哪?”还有“我只要3样东西……X、Y和Z。哪里可以看到它们?”
哎,这时候你才会意识到自己迷失在杂草丛中,遗失了重点。
我会有个办法,尝试使用文字来精确表达人们所要的东西。
5.2 ?Method:
Understand user’s requirements , highlight it through: put it visible position, give text to directly indicate the result.
尝试使用文字来精确表达人们所要的东西。
在重要信息上,文字总结可能比图表更有效。两者都
通过文字展现用户所需的信息,并没有依赖需要解释说明的图表。
这个方法使我们的客户产生共鸣,尤其在重要信息上。但我之前提过,总要考虑各种角色,所以要用在适当的地方。就像其他所有形式的设计一样,它也需要一种平衡。
力求使你的数据与众不同,但是要避免过度设计和无谓的分心。
为数据选择正确的图形,但别忘了有层次地构建页面。
无论多么单调、令人沮丧,还要打磨每个小细节……还有别忘了问自己,“那又如何?”
可视化数据分析有什么好的案例
这样的实例有很多
下面这个就是如何以令人信服的方式呈现一种单一的数据的好榜样。Pew Research创造了这个GIF动画,显示随着时间推移的人口统计数量的变化。这是一个好方法,它将一个内容较多的故事压缩成了一个小的package。
此外,这种类型的微内容很容易在社交网络上分享或在博客中嵌入,扩大了内容的传播范围。如果你想自己用Photoshop做GIF,这里有一个详细的教程。