百度
360搜索
搜狗搜索

函数的概念,函数是啥意思啊?详细介绍

本文目录一览: 函数的概念定义是什么?

一般的,设在一个变化过程中有两个变量x,y,如果对于x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x 的函数
一般地,在某个变化过程中,有两个变量x和y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量.
两个变量 ,一个x值确定一个y值
一次函数与正比例函数:一般地,如果两个变量x与y之间的函数关系可以表示为y=kx+b(k,b为常数,且k10)的形式,那么称y是x的一次函数(x为自变量,y为因变量)特别地,当b=0时,称y是x的正比例函数。
变量的指数为一次;‚含自变量的式子为整式;ƒk10.
函数的概念定义:给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。
函数(function),最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
扩展资料:
函数的表示方法:
1、解析式法
用含有数学关系的等式来表示两个变量之间的函数关系的方法叫做解析式法。这种方法的优点是能简明、准确、清楚地表示出函数与自变量之间的数量关系;缺点是求对应值时往往要经过较复杂的运算,而且在实际问题中有的函数关系不一定能用表达式表示出来。
2、列表法
用列表的方法来表示两个变量之间函数关系的方法叫做列表法。这种方法的优点是通过表格中已知自变量的值,可以直接读出与之对应的函数值;缺点是只能列出部分对应值,难以反映函数的全貌。
3、图像法
把一个函数的自变量x与对应的因变量y的值分别作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。这种表示函数关系的方法叫做图象法。这种方法的优点是通过函数图象可以直观、形象地把函数关系表示出来。
参考资料来源:百度百科—函数

函数的概念是什么

函数是指一种特殊的关系,它将一个或多个输入(称为自变量)映射到一个输出(称为因变量)。
一、函数的定义与概念
函数是数学中的一个基本概念,它描述了一种关系,将输入映射到输出的过程。函数可以用来描述数学模型、自然现象、计算机程序等各种事物之间的关系。在数学中,函数常用符号f表示,可以表示为f(x)=y,其中x是自变量,y是因变量。
二、函数的元素和特性
1.自变量和因变量
函数中的自变量是独立的变量,是输入给函数的值;而因变量则是依赖于自变量的变量,是函数根据自变量的取值而确定的输出。
2.定义域和值域
函数的定义域是指自变量可能取值的范围,而值域则是函数可能取得的所有输出值的集合。
3.单值性和多值性
函数可以是单值的,也就是说每个自变量对应着唯一的因变量。另外,函数还可以是多值的,即同一个自变量可以对应多个不同的因变量。
4.反函数和复合函数
反函数是指将函数中的自变量和因变量交换得到的新函数,它将原函数的输出作为自变量输入,并得到原函数的自变量作为输出。复合函数则是两个函数相互组合形成的新函数。
三、函数的表示与图像
1.方程表示
函数可以通过方程来表示,常见的表示方式包括代数方程、函数式方程、微分方程等。
2.图像表示
函数的图像由自变量和因变量组成的点集在平面上的表示,其中自变量通常在横轴上表示,因变量在纵轴上表示。函数的图像可以用于分析函数的性质、变化趋势以及与其他函数的关系等。
四、常见函数类型
1.一次函数
一次函数是指函数表达式中只含有一次幂的函数,例如f(x)=ax+b,其中a和b是常数。
2.二次函数
二次函数是指函数表达式中含有二次幂的函数,例如f(x)=ax^2+bx+c,其中a、b和c是常数。
3.指数函数
指数函数是以一个常数为底数的幂函数,例如f(x)=a^x,其中a是常数。
4.对数函数
对数函数是指指数函数的反函数,例如f(x)=loga(x),其中a是常数。
5.三角函数
三角函数包括正弦函数、余弦函数、正切函数等,它们描述了角度与长度之间的关系。

函数的概念是什么?

函数是数学名词,代数式中,凡相关的两数X与Y,对于每个X值,都只有一个Y的对应值。这种对应关系就表示Y是X的函数。函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量。
函数的概念是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的概念由来:
中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。
中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”所以“函数”是指公式里含有变量的意思。
我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组。

函数是啥意思啊?

函数:对于两个非空数集A、B,对于集合A中的任意一个元素,按照某种对应法则,在集合B中都有唯一确定的元素与之对应,则这样的对应称为函数。
函数的意义:在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个集合里的唯一元素。函数的概念对于数学和数量学的每一个分支来说都是最基础的。术语函数,映射,对应,变换通常都是同一个意思。简而言之,函数是将唯一的输出值赋予每一输入的“法则”。这一“法则”可以用函数表达式、数学关系,或者一个将输入值与输出值对应列出的简单表格来表示。函数最重要的性质是其决定性,即同一输入总是对应同一输出(注意,反之未必成立)。从这种视角,可以将函数看作“机器”或者“黑盒”,它将有效的输入值变换为唯一的输出值。通常将输入值称作函数的参数,将输出值称作函数的值。

什么是函数?函数的概念是什么?

函数的概念:
在一个变化过程中,发生变化的量叫变量(数学中,变量为x,而y则随x值的变化而变化),有些数值是不随变量而改变的,我们称它们为常量。
自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。
因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。
函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。
表示:函数是发生在集合之间的一种对应关系。然后,要理解发生在A、B之间的函数关系有且不止一个。最后,要重点理解函数的三要素。函数的对应法则通常用解析式表示,但大量的函数关系是无法用解析式表示的,可以用图像、表格及其他形式表示。
函数的由来
中文数学书上使用的“函数”一词是转译词。是我国清代数学家李善兰在翻译《代数学》(1859年)一书时,把“function”译成“函数”的。
中国古代“函”字与“含”字通用,都有着“包含”的意思。李善兰给出的定义是:“凡式中含天,为天之函数。”中国古代用天、地、人、物4个字来表示4个不同的未知数或变量。这个定义的含义是:“凡是公式中含有变量x,则该式子叫做x的函数。”
所以“函数”是指公式里含有变量的意思。我们所说的方程的确切定义是指含有未知数的等式。但是方程一词在我国早期的数学专著《九章算术》中,意思指的是包含多个未知量的联立一次方程,即所说的线性方程组

怎样理解函数的概念?

1、函数通俗的意思就是由自变量和因变量所确定的一种关系,自变量可能有一个、两个或者N个,但因变量的值当自变量确定的时候也是唯一确定的。
2、函数的意义是在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个集合里的唯一元素。
函数的特性
1、有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界。
2、单调性
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1
<x2时,恒有f(x1)<f(x2)。
则称函数f(x)在区间I上是单调递增的;如果对于区间I上任意两点x1及x2,当x1

f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

</x2时,恒有f(x1)<f(x2)。

函数概念是什么呢?

函数概念是:
传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x)。
得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数的性质:
设函数f(x)的定义域为D,区间I包含于D。如果对于区间上任意两点x1及x2,当x1
<x2时,恒有f(x1)<f(x2),则称函数f(x)在区间i上是单调递增的。
如果对于区间I上任意两点x1及x2,当x1

f(x2),则称函数f(x)在区间I上是单调递减的。单调递增和单调递减的函数统称为单调函数。

在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义。

</x2时,恒有f(x1)<f(x2),则称函数f(x)在区间i上是单调递增的。

函数的定义是什么?

函数定义:设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有惟一的元素和它对应,这样的对应叫做从集合A到集合B的映射,记作f : A-->B. 当集合A,B都是非空的数的集合,且B的每一个元素都有原象时,这样的映射f:A-->B.就叫定义域A到值域B上的函数.
在初中课本中的定义是:一般的,有两个变量XY,其中一个变量Y随着另一个变量X的变化而变化,并且,给出一个X值都有唯一的一个Y值与它对应。X叫自变量,Y叫因变量。
函数在数学领域,函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。
因变量,函数一个与他量有关联的变量,这一量中的任何一值都能在他量中找到对应的固定值。
函数两组元素一一对应的规则,第一组中的每个元素在第二组中只有唯一的对应量。
函数的概念对于数学和数量学的每一个分支来说都是最基础的。
术语函数,映射,对应,变换通常都有同一个意思。
但函数只表示数与数之间的对应关系,映射还可表示点与点之间,图形之间等的对应关系。可以说函数是一种特殊的映射。

函数的概念及其表示

1、函数的概念:
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),x∈A。其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;函数的定义域、值域要写成集合或区间的形式。(补充)定义域:能使函数式有意义的实数x的集合称为函数的定义域。求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是使各部分都有意义的x的值组成的集合;(6)指数为零底不可以等于零;
(7)实际问题中的函数的定义域还要保证实际问题有意义。注意:求出不等式组的解集即为函数的定义域。2、构成函数的三要素:定义域、对应关系和值域注意:(1)构成函数的三个要素是定义域、对应关系和值域。由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)
(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备)

阅读更多 >>>  excel怎么使用vlookup函数,excel的vlookup函数怎么用

网站数据信息

"函数的概念,函数是啥意思啊?"浏览人数已经达到20次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:函数的概念,函数是啥意思啊?的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!