补码原码,电脑中原码和补码是什么关系?
补码原码,电脑中原码和补码是什么关系?详细介绍
本文目录一览: 电脑中原码和补码是什么关系?
电脑中原码和补码是什么关系?
在电脑中,它们,哪有什么关系!
它们根本就见不着面,什么关系也没有。
在电脑中,数值,一律采用补码表示和存储。
电脑中,根本就没有原码和反码。
原码和反码,只是在纸上,随便写一写而已。
原码,反码,补码是机器存储一个具体数字的编码方式。原码跟补码之间的关系是:正数的补码与原码相同,负数的补码为 其原码除符号位外所有位取反(得到反码了),然后最低位加1。
在计算机系统中,数值一律用补码来表示和存储。使用补码,可以将符号位和数值域统一处理;同时,加法和减法也可以统一处理。
原码不能直接参加运算,可能会出错。例如数学上,1 (-1)=0,而在二进制中00000001
10000001=10000010,换算成十进制为-2。
扩展资料
原码是有符号数的最简单的编码方式,便于输入输出,但作为代码加减运算时较为复杂。一个字长为n的机器数能表示不同的数字的个数是固定的2^n个,n=8时2^n=256;
用来表示有符号数,数的范围就是 -2^(n-1) ~ 2^(n-1)-1,n=8时,这个范围就是 -128 ~ 127。但是在不需要考虑数的正负时,就不需要用一位来表示符号位,n位机器数全部用来表示是数值,这时表示数的范围就是0~2^n-1,n=8时这个范围就是0~255.没有符号位的数,称为无符号数。
参考资料来源:百度百科-原码
参考资料来源:百度百科-补码
计算机的原码,反码,补码是怎么回事?可以举例说明吗?
原码、反码和补码是计算机中对数字二进制的三种表示方法。
1、原码
原码(trueform)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示: 0和-0),其余位表示数值的大小。
例如:用8位二进制表示一个数, 11的原码为00001011,-11的原码就是10001011。
2、反码
反码是数值存储的一种,多应用于系统环境设置,如linux平台的目录和文件的默认权限的设置umask,就是使用反码原理。反码的表示方法是:正数的反码与其原码相同;负数的反码是对正数逐位取反,符号位保持为1。
例如:
[ 7]反=00000111B;
[-7]反=11111000B。
3、补码
正数:正数的补码和原码相同。负数:负数的补码则是符号位为“1”。并且,这个“1”既是符号位,也是数值位。数值部分按位取反后再在末位(最低位)加1。也就是“反码 1”。
例如:
[ 7]补=00000111B;
[-7]补=11111001B。
扩展资料
原码、反码、补码的转换方法如下:
(1)已知原码,求补码。
例:已知某数X的原码为10110100B,试求X的补码和反码。
首先通过原码的首位确定该数字的正负,若为正数,反码与原码相同,补码比原码在末尾加1;若为负数,求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
(2)已知补码,求原码。
按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1的方法。
参考资料来源:百度百科-反码
参考资料来源:百度百科-补码
参考资料来源:百度百科-原码
原码反码和补码有什么区别?
原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值。
正数的反码是其本身,负数的反码是在其原码的基础上, 符号位不变,其余各个位取反。
正数的补码就是其本身,负数的补码是在其原码的基础上符号位不变,其余各位取反, 最后 1(即在反码的基础上 1)。
正数的原码,反码,补码都一样。
原码(true form)是一种计算机中对数字的二进制定点表示方法。
原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示: 0和-0),其余位表示数值的大小。
原码、补码、反码之间是怎样转换的?
计算机系统中,并没有原码和反码。
不存在的东西,哪有什么可转换的呢?
在计算机中,使用的是二进制。
八个二进制位,称为一个字节。
计数范围是:0000 0000~1111 1111。
对应十进制:0 ~ 255,共有 256 个数字。
计数周期是:2^8 = 256。
在计算机中,并没有负数。
所以,计算机中这些数字,都属于自然数,即“零和正数”。
但是,实际上,正数,也能当负数用的。
你看 2 位 10 进制数的计算:
25 - 1 = 24
25 99 = (一百) 24
如果,你不舍弃进位,结果就 124, 99 还是 99。
如果,你舍弃了超出 2 位数的进位, 99 就相当于-1 。
这时的正数,就称为“负数的补数”。
算法是:补数=负数+周期 (10^n),n 是补数的位数。
-------------------------
同理,在计算机中,255 = 1111 1111,就相当于-1。
示例: 0000 0001 = 1
+ 1111 1111 = 255
--------------
(1) 0000 0000 = 0
如果舍弃了进位 1,这算式,就是: 1 -1 = 0。
如果保留进位,这就是: 1 255 = 256。
-------------------------
那么,254 = 1111 1110,就相当于-2。
。。。
只要你舍弃进位,这些正数,就可以代表负数,参加运算。
这些正数,就称为:负数的补码。
补码 = 负数 + 周期(2^n),n 是补码的位数。
-------------------------
利用补码,可以把减法,转换成加法运算。
从而,就能简化计算机的硬件。
原码和反码,都没有这种功能。
所以,在计算机中,并没有原码和反码。
符号位原码反码取反加一,这些,都是“鸡肋”。
学习这堆垃圾,花费时间不少,还是弄不懂“补码的意义”。
老外数学不好,也就只能整这些骚操作了。
一、正整数的原码、反码、补码完全一样,即符号位固定为0,数值位相同。
二、负整数的符号位固定为1,由原码变为补码时,规则如下:
1、原码符号位1不变,整数的每一位二进制数位求反,得到反码。
2、反码符号位1不变,反码数值位最低位加1,得到补码。
方法:
(1)正整数的原码,反码和补码计算。【符号位为0,原码=反码=补码】
(2)负整数的原码,反码和补码计算,先求原码,再求反码,最后求补码。
(3)根据补码求真值,一般使用图中的公式计算,正整数符号为 ,负整数符号为-,通常完成补码求真后,可以按步骤1、2简单的逆推一下,看结果是否正确。
扩展资料:补码的表示方法:
模的概念:把一个计量单位称之为模或模数。例如,时钟是以12 进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。
从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10 12=2)。因此,在模12的前提下,-10可映射为 2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的。
因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为 补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位 二进制数,它的模数为2^8=256。在计算中,两个互补的数称为“补码”。
原码反码补码怎么算
原码反码补码计算方法如下:
一、原码
1:字长为8 , 符号位(首位)为0 表示正数 ; 符号位(首位)为1 表示负数。
2:0000 0001 表示 正1 ; 1000 0001 表示负1。
二、反码
1:正数,反码和原码一样。正1的原码和反码为0000 0001。
2:负数,符号位不变,其他位取反。负1的反码为:1111 1110。
三、补码
1:正数,补码和原码一样。正1的补码为 0000 0001。
2:负数,补码为反码加1,负1的补码为 1111 1111。
3:计算机在计算的时候是用补码在计算。
四、移码
1:补码的符号位取反 正1的移码为 1000 0001 ; 负1的移码为 0111 1111。
二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统。
数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。
其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。
什么是补码?什么是原码?
在计算机系统中,数值,一律采用补码表示和存储。
计算机,并不使用原码和反码
在计算机中,原码和反码,也都不存在。
讨论原码反码,又有什么意义呢?
---------------------
补码,其实,它就是一个【代替负数】的正数。
使用了补码之后,在计算机中,就没有负数了。
顺便,也就消除了减法运算。
那么,计算机只需配置一个加法器,就可以走遍天下了。
---------------------
补码(即一个正数),怎么就能【代替负数】呢?
理论基础在于:计数系统的周期性。
比如,2 位 10 进制数(0~99),计数周期就是 10^2 = 100。
那么: 25 - 1 = 24
25 99 = (一百) 24
只要你:舍弃进位,仅保留 2 位数, 99 就能代替-1。
同理, 98 也能代替-2。
。。。
这些正数,就可以称为“负数的补数”。
变换公式: 负数的补数 = 负数 + 周期。
另外还有:
时针,周期是 12,倒拨 3 小时、正拨 9 小时,等效吧?
三角函数的周期是 2π,-π/2、 3π/2,正、负角度,也等效。
。。。
这些负数变正数,公式都是: 正数 = 负数 + 周期。
反之,也成立,即: 负数 = 正数 - 周期。
---------------------
计算机中,8 位 2 进制数,周期就是 2^8 = 256。
-1 的补码,就是:-1 256 = 255 = 1111 1111(二进制)。
-2 的补码,就是:254 = 1111 1110(二进制)。
。。。
求补码,用“负数+周期”,直接就能求出补码。
不必经过“原码反码取反加一符号位不变”。
数学不好的老外,才需要弄哪些骚操作!
---------------------
只有负数,才需要变换成补码(正数)。
正数,不需要变换,也不允许变换,必须直接去相加运算。
所以,正数,它就没有补码。
有人说:正数的。。。都相同。
这就是被老外带到沟里去了。
原码反码,在计算机中,都是不存在的,哪还有什么相同!
8位字长原码表示的有符号定点小数真值范围:1.1111111b~ 0.1111111b,即: -(127D/128)d ~ (127/128)d。
8位字长补码表示的有符号定点小数范围: -1.0000000b ~ 0.1111111b,即: -1d ~ (127/128)d。
补码的一些信息:
补码(2's complement)是一种用二进制表示有号数的方法,也是一种将数字的正负号变号的方式,常在计算机科学中使用。在台湾地区通常称为二补数。
一个数字的补码就是将该数字作比特反相运算(即一补数或反码),再将结果加 1,即为该数字的补码。在补码系统中,一个负数就是用其对应正数的补码来表示。
补码系统的最大优点是可以在加法或减法处理中,不需因为数字的正负而使用不同的计算方式。只要一种加法电路就可以处理各种有符号数加法,而且减法可以用一个数加上另一个数的补码来表示,因此只要有加法电路及补码电路即可完成各种有号数加法及减法,在电路设计上相当方便。
另外,补码系统的 0 只有一个表示方式,这点和一补数系统不同(在一补数系统中,0 有二种表示方式),因此在判断数字是否为 0 时,只要比较一次即可。
原码反码补码计算公式及关系
原码反码补码计算公式及关系如下:
原码:二进制数的最高位表示符号位,0表示正数,1表示负数,其余位表示数值大小。
反码:正数的反码与原码相同,负数的反码是对其原码除符号位外的各位取反。
补码:正数的补码与原码相同,负数的补码是对其反码加1。
计算公式:
关系:
原码、反码、补码之间的转换关系是固定的,可以通过公式进行转换。
在计算机中,通常使用补码表示有符号整数,因为补码可以简化加减法的实现。
在进行加减法运算时,可以将两个数的补码相加,再将结果的补码转换为原码,即可得到正确的结果。
原码转反码:负数的反码是对其原码除符号位外的各位取反。
反码转原码:负数的原码是对其反码除符号位外的各位取反。
反码转补码:负数的补码是对其反码加1。
补码转反码:负数的反码是对其补码减1。
补码转原码:负数的原码是对其补码减1,再对其除符号位外的各位取反。
在进行位运算时,原码、反码、补码的结果是相同的,因为位运算只涉及数值大小,不涉及符号位。
在计算机中,通常使用补码表示有符号整数,因为补码可以避免出现两个0的情况,即 0和-0,同时也可以避免出现溢出的情况。
在进行乘法运算时,需要将两个数的补码相乘,再将结果的补码转换为原码,即可得到正确的结果。
总之,原码、反码、补码是计算机中表示有符号整数的三种方式,它们之间有固定的转换关系,可以根据需要进行相互转换。在实际应用中,通常使用补码表示有符号整数,因为补码可以简化加减法的实现,避免出现两个0的情况,同时也可以避免出现溢出的情况。
怎么求补码的原码?
已知一个数的补码,求原码的操作其实就是对该补码再求补码:
1、如果补码的符号位为“0”,表示是一个正数,其原码就是补码。
2、如果补码的符号位为“1”,表示是一个负数,那么求给定的这个补码的补码就是要求的原码。
例如:已知一个补码为11111001,则原码是10000111(-7)。因为符号位为“1”,表示是一个负数,所以该位不变,仍为“1”。
其余七位1111001取反后为0000110;再加1,所以是10000111。
扩展资料:数的表示:
在数的表示上通过人为的定义来消除编码映射的不唯一性,对转换后的10000000强制认定为-128。当然对原码和反码也可以做这种强制认定,那为什么原码和反码没有流行起来?原码和反码没有流行起来,是因为在数的运算上对符号位的处理无法用当时已有的机器物理设计来实现。
由于原码和反码在编码时采用了硬性的人工设计,这种设计在数理上无法自动的通过模来实现对符号位的自动处理,符号位必须人工处理,必须对机器加入新的物理部件来专门处理符号位,这加大了机器设计难度,加大的机器成本,不到万不得已,不走这条路。
参考资料:百度百科--补码
计算机中补码怎么算出原码?
1、首先要知道,换算规则:原码转换为反码:符号位不变,数值位分别“按位取反” 。
2、接着反码转换为原码也是一样,但规则却有不同之处:符号位不变,数值位分别“按位取反”。
3、然后就是,原码转换为补码的规则:符号位不变,数值位按位取反,末位再加1。
4、最后补码转换为原码:符号位不变,数值位按位取反,末位再加1,即补码的补码等于原码。
5、而求补(变补)的换算规则与之前有所差别:符号位和数值位都取反,末位再加1。
补码,原码,反码什么的。有什么作用啊!
在计算机系统中,数值,一律采用补码表示和存储。
在计算机中,原码和反码,根本就不存在。
不存在的东西,哪还有什么用呢?
这三个词是计算机里面的内容,下面依次解释:
原码:原码就是早期用来表示数字的一种方式: 一个正数,转换为二进制位就是这个正数的原码。负数的绝对值转换成二进制位然后在高位补1就是这个负数的原码。
举例:
int类型的 3 的原码是 11B(B表示二进制位), 在32位机器上占四个字节,那么高位补零就得:
00000000 00000000 00000000 00000011
int类型的 -3 的绝对值的二进制位就是上面的 11B 展开后高位补零就得:
10000000 00000000 00000000 00000011
但是原码有几个缺点,零分两种 0 和 -0 。很奇怪是吧!还有,在进行不同符号的加法运算或者同符号的减法运算的时候,不能直接判断出结果的正负。你需要将两个值的绝对值进行比较,然后进行加减操作 ,最后符号位由绝对值大的决定。于是反码就产生了。
反码:正数的反码就是原码,负数的反码等于原码除符号位以外所有的位取反
举例:
int类型的 3 的反码是
00000000 00000000 00000000 00000011
和原码一样没什么可说的
int类型的 -3 的反码是
11111111 11111111 11111111 11111100
除开符号位,所有位,取反
解决了加减运算的问题,但还是有正负零之分,然后就到补码了
补码:正数的补码与原码相同,负数的补码为 其原码除符号位外所有位取反(得到反码了),然后最低位加1.
举例:
int类型的 3 的补码是:
00000000 00000000 00000000 00000011
int类型的 -3 的补码是
11111111 11111111 1111111 11111101
就是其反码加1
最后总结:
正数的反码和补码都与原码相同。
负数的反码为对该数的原码除符号位外各位取反。
负数的补码为对该数的原码除符号位外各位取反,然后在最后一位加1。
扩展资料二进制是计算技术中广泛采用的一种数制。二进制数据是用0和1两个数码来表示的数。它的基数为2,进位规则是“逢二进一”,借位规则是“借一当二”,由18世纪德国数理哲学大师莱布尼兹发现。当前的计算机系统使用的基本上是二进制系统,数据在计算机中主要是以补码的形式存储的。计算机中的二进制则是一个非常微小的开关,用“开”来表示1,“关”来表示0。
20世纪被称作第三次科技革命的重要标志之一的计算机的发明与应用,因为数字计算机只能识别和处理由‘0’.‘1’符号串组成的代码。其运算模式正是二进制。19世纪爱尔兰逻辑学家乔治布尔对逻辑命题的思考过程转化为对符号"0''.''1''的某种代数演算,二进制是逢2进位的进位制。0、1是基本算符。因为它只使用0、1两个数字符号,非常简单方便,易于用电子方式实现。