复合函数求导法则公式,复合函数的求导法则是什么?
复合函数求导法则公式,复合函数的求导法则是什么?详细介绍
本文目录一览: 复合函数的求导公式
复合函数的求导公式如下:
F'(g(x)) = [ F(g(x dx)) - F(g(x)) ] / dx (1)g(x dx) - g(x) = g'(x)*dx = dg(x) (2)g(x dx) = g(x) dg(x) (3)F'(g(x)) = [ F(g(x) dg(x)) - F(g(x)) ] /dx [ F(g(x) dg(x)) - F(g(x)) ] / dg(x) * dg(x)/dx =F'(g) * g'(x)
基本函数的求导公式1.y=c(c为常数) y'=02.y=x^n y'=nx^(n-1)3.y=a^x y'=a^xlnay=e^x y'=e^x4.y=logax y'=logae/xy=lnx y'=1/x5.y=sinx y'=cosx6.y=cosx y'=-sinx7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x9.y=arcsinx y'=1/√1-x^210.y=arccosx y'=-1/√1-x^211.y=arctanx y'=1/1 x^212.y=arccotx y'=-1/1 x^2
复合导数公式及运算法则
复合导数公式及运算法则如下:
复合函数导数公式是f'[g(x)]=f'(u)*g'(x)。
复合函数的运算法则:
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果Mx∩Du≠?,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系。
复合函数求导的方法:
f[g(x)]中,设g(x)=u,则f[g(x)]=f(u),从而(公式):f'[g(x)]=f'(u)*g'(x),举个例子,f[g(x)]=sin(2x),则设g(x)=2x,令g(x)=2x=u,则f(u)=sin(u)。
所以f'[g(x)]=[sin(u)]'*(2x)'=2cos(u),再用2x代替u,得f'[g(x)]=2cos(2x)。
以此类推y'=[cos(3x)]'=-3sin(x),y'={sin(3-x)]'=-cos(x),一开始会做不好,老是要对照公式和例子。
但只要多练练,并且熟记公式,最重要的是记住一两个例子,多练习就会了。
复合函数求导公式
复合函数求导公式:①设u=g (x),对f (u)求导得:f' (x)=f' (u)*g' (x);②设u=g (x),a=p (u),对f (a)求导得:f' (x)=f' (a)*p' (u)*g' (x);
什么是复合函数:设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果MxnDu≠0,那么对于MxnDu内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
复合函数怎么求导:总的公式f’[g(x)]=f’(g) Xg’(x),比如说:求1n(x 2)的导函数。[In(x 2)]’=[1/(x 2)][注: 此时将(x 2)看成一个整体的未知数x]X1[注: 1即为(x 2)的导数]。
主要方法:先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。
复合函数导数公式及运算法则
复合函数导数公式极其运算法则同学们还记得吗,如果不记得了,请往下看。下面是由我为大家整理的“复合函数导数公式及运算法则”,仅供参考,欢迎大家阅读。
复合函数导数公式
.常用导数公式
1.y=c(c为常数) y'=0
2.y=x^n y'=nx^(n-1)
3.y=a^x y'=a^xlna
y=e^x y'=e^x
4.y=logax y'=logae/x
y=lnx y'=1/x
5.y=sinx y'=cosx
6.y=cosx y'=-sinx
7.y=tanx y'=1/cos^2x
8.y=cotx y'=-1/sin^2x
9.y=arcsinx y'=1/√1-x^2
10.y=arccosx y'=-1/√1-x^2
11.y=arctanx y'=1/1 x^2
12.y=arccotx y'=-1/1 x^2
在推导的过程中有这几个常见的公式需要用到:
1.y=f[g(x)],y'=f'[g(x)]?g'(x)『f'[g(x)]中g(x)看作整个变量,而g'(x)中把x看作变量』
2.y=u/v,y'=u'v-uv'/v^2
3.y=f(x)的反函数是x=g(y),则有y'=1/x'
证:1.显而易见,y=c是一条平行于x轴的直线,所以处处的切线都是平行于x的,故斜率为0。用导数的定义做也是一样的:y=c,⊿y=c-c=0,lim⊿x→0⊿y/⊿x=0。
2.这个的推导暂且不证,因为如果根据导数的定义来推导的话就不能推广到n为任意实数的一般情况。在得到 y=e^x y'=e^x和y=lnx y'=1/x这两个结果后能用复合函数的求导给予证明。
3.y=a^x,
⊿y=a^(x ⊿x)-a^x=a^x(a^⊿x-1)
⊿y/⊿x=a^x(a^⊿x-1)/⊿x
如果直接令⊿x→0,是不能导出导函数的,必须设一个辅助的函数β=a^⊿x-1通过换元进行计算。由设的辅助函数可以知道:⊿x=loga(1 β)。
所以(a^⊿x-1)/⊿x=β/loga(1 β)=1/loga(1 β)^1/β
显然,当⊿x→0时,β也是趋向于0的。而limβ→0(1 β)^1/β=e,所以limβ→01/loga(1 β)^1/β=1/logae=lna。
把这个结果代入lim⊿x→0⊿y/⊿x=lim⊿x→0a^x(a^⊿x-1)/⊿x后得到lim⊿x→0⊿y/⊿x=a^xlna。
可以知道,当a=e时有y=e^x y'=e^x。
4.y=logax
⊿y=loga(x ⊿x)-logax=loga(x ⊿x)/x=loga[(1 ⊿x/x)^x]/x
⊿y/⊿x=loga[(1 ⊿x/x)^(x/⊿x)]/x
因为当⊿x→0时,⊿x/x趋向于0而x/⊿x趋向于∞,所以lim⊿x→0loga(1 ⊿x/x)^(x/⊿x)=logae,所以有
lim⊿x→0⊿y/⊿x=logae/x。
可以知道,当a=e时有y=lnx y'=1/x。
这时可以进行y=x^n y'=nx^(n-1)的推导了。因为y=x^n,所以y=e^ln(x^n)=e^nlnx,
所以y'=e^nlnx?(nlnx)'=x^n?n/x=nx^(n-1)。
5.y=sinx
⊿y=sin(x ⊿x)-sinx=2cos(x ⊿x/2)sin(⊿x/2)
⊿y/⊿x=2cos(x ⊿x/2)sin(⊿x/2)/⊿x=cos(x ⊿x/2)sin(⊿x/2)/(⊿x/2)
所以lim⊿x→0⊿y/⊿x=lim⊿x→0cos(x ⊿x/2)?lim⊿x→0sin(⊿x/2)/(⊿x/2)=cosx
6.类似地,可以导出y=cosx y'=-sinx。
7.y=tanx=sinx/cosx
y'=[(sinx)'cosx-sinx(cos)']/cos^2x=(cos^2x sin^2x)/cos^2x=1/cos^2x
8.y=cotx=cosx/sinx
y'=[(cosx)'sinx-cosx(sinx)']/sin^2x=-1/sin^2x
9.y=arcsinx
x=siny
x'=cosy
y'=1/x'=1/cosy=1/√1-sin^2y=1/√1-x^2
10.y=arccosx
x=cosy
x'=-siny
y'=1/x'=-1/siny=-1/√1-cos^2y=-1/√1-x^2
11.y=arctanx
x=tany
x'=1/cos^2y
y'=1/x'=cos^2y=1/sec^2y=1/1 tan^2x=1/1 x^2
12.y=arccotx
x=coty
x'=-1/sin^2y
y'=1/x'=-sin^2y=-1/csc^2y=-1/1 cot^2y=-1/1 x^2
另外在对双曲函数shx,chx,thx等以及反双曲函数arshx,archx,arthx等和其他较复杂的复合函数求导时通过查阅导数表和运用开头的公式与
4.y=u土v,y'=u'土v'
5.y=uv,y=u'v uv'
均能较快捷地求得结果。
复合函数导数运算法则
复合函数求导法则 y=f(u(x)) 对x求导 y ' = u(x)' * f(u(x))',f(u(x))‘ 要把括号里的u(x)看做整体求导,你问的等式中2就是(2x 3)对x求导的结果,再把(2x 3)看做一个整体对其5次方进行求导。
y=【(2x 5)的5次方】’ =2[(2x 5)的5次方]=2*5*[(2x 5)的4次方]。
复合函数如何求导
简单分析一下,答案如图所示
复合函数求导法则如下:
一般地,对于函数y=f(u)和u=g(ⅹ)复合而成的函数y=f(g(ⅹ)),它的导数与函数y=f(u),u=g(x)的导数间的关系为yⅹ'=yu'·uⅹ',即y对x的导数等于y对u的导数与u对x导数的乘积。
总的公式f'[g(x)]=f'(g)×g'(x)
比如说:求ln(x 2)的导函数
[ln(x 2)]'=[1/(x 2)] 【注:此时将(x 2)看成一个整体的未知数x'】 ×1【注:1即为(x 2)的导数】
复合函数求导的步骤:
1、分层:选择中间变量,写出构成它的内,外层函数。
2、分别求导:分别求各层函数对相应变量的导数。
3、相乘:把上述求导的结果相乘。
4、变量回代:把中间变量回代。
主要方法:
先对该函数进行分解,分解成简单函数,然后对各个简单函数求导,最后将求导后的结果相乘,并将中间变量还原为对应的自变量。例如,复合函数求导。
求复合函数的导数注意:
1、分解的函数通常为基本初等函数。
2、求导时分清是对哪个变量求导。
3、计算结果尽量简单。
4、对含有三角函数的函数求导,往往需要利用三角恒等变换公式,对函数式进行化简,使函数的种类减少,次数降低,结构尽量简单,从而便于求导。
5、分析待求导的函数的运算结构,弄清函数是由哪些基本初等函数通过何种运算而构成的,确定所需的求导公式。
复合函数求导公式有哪些
复合函数的求导公式有哪些呢?想来绝大部分的人都不知道,为了满足大家的好奇心。下面是由我为大家整理的“复合函数求导公式有哪些”,仅供参考,欢迎大家阅读。
复合函数求导公式有哪些
链式法则(英文chain rule)是微积分中的求导法则,用以求一个复合函数的导数。所谓的复合函数,是指以一个函数作为另一个函数的自变量。如设f(x)=3x,g(x)=3x 3,g(f(x))就是一个复合函数,并且g′(f(x))=9。要注意f(x)的自变量x与g(x)的自变量x之间并不等同。
链式法则(chain rule)
若h(a)=f[g(x)]
则h'(a)=f'[g(x)]g'(x)
链式法则用文字描述,就是"由两个函数凑起来的复合函数,其导数等于里函数代入外函数的值之导数,乘以里边函数的导数。"
拓展阅读:复合函数的奇偶性
复合函数中只要有偶函数则复合函数为偶函数,如一奇一偶为偶;
若只有奇函数则复合函数为奇函数,无论奇数个还是偶数个,如两奇仍为奇。
1、f(x)*g(x)*h(x)这种相乘的复合函数。
奇函数的个数是偶数,复合函数就是偶函数。
奇函数的个数是奇数,复合函数就是奇函数。
2、f(g(h(x)))这种多层的复合函数。
函数中的有偶数,复合函数就是偶函数。
函数中的没有偶数,奇函数的个数是偶数,复合函数就是偶函数。
函数中的没有偶数,奇函数的个数是奇数,复合函数就是奇函数。
复合函数的单调性的判断方法
复合函数单调性就2句话:
2个函数(或多个)都递增或者都递减那么复合函数就是单调递增函数
2个函数一个递增一个递减那么复合函数就是单调递减函数
简单记法:负负得正,正在得正,负正得负
复合函数的求导法则是什么?
复合函数导数公式如下:
含义:
设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为Dx,值域为Mx,如果 Mx∩Du≠0,那么对于Mx∩Du内的任意一个x经过u;有唯一确定的v值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数。
论证说明:
f(x)在点x0可导的充要条件是在x0的某邻域U(x0)内,存在一个在点x0连续的函数H(x),使f(x)-f(x0)=H(x)(x-x0)从而f'(x0)=H(x0)。
证明:设f(x)在x0可导,令 H(x)=[f(x)-f(x0)]/(x-x0),x∈U'(x0)(x0去心邻域);H(x)=f'(x0),x=x0。
因lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=f'(x0)=H(x0)。
所以H(x)在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)。
反之,设存在H(x),x∈U(x0),它在点x0连续,且f(x)-f(x0)=H(x)(x-x0),x∈U(x0)。
因存在极限lim(x->x0)H(x)=lim(x->x0)[f(x)-f(x0)]/(x-x0)=lim(x->x0)f'(x)=H(x0)。
所以f(x)在点x0可导,且f'(x0)=H(x0)。
引理证毕。
延伸论证说明:
设u=φ(x)在点u0可导,y=f(u)在点u0=φ(x0)可导,则复合函数F(x)=f(φ(x))在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)。
证明:由f(u)在u0可导,由引理必要性,存在一个在点u0连续的函数H(u),使f'(u0)=H(u0),且f(u)-f(u0)=H(u)(u-u0)。
又由u=φ(x)在x0可导,同理存在一个在点x0连续函数G(x),使φ'(x0)=G(x0),且φ(x)-φ(x0)=G(x)(x-x0)。
于是就有,f(φ(x))-f(φ(x0))=H(φ(x))(φ(x)-φ(x0))=H(φ(x))G(x)(x-x0)。
因为φ,G在x0连续,H在u0=φ(x0)连续,因此H(φ(x))G(x)在x0连续,再由引理的充分性可知F(x)在x0可导,且F'(x0)=f'(u0)φ'(x0)=f'(φ(x0))φ'(x0)。
高人留步!!!复合函数求导公式
设y=f(u),u=g(x)
则y对x的导数等于y对u的导数乘以u对x的导数
如y=(1 x)2-ln(1 x)2
其中(1 x)^2就可以看成由u=v^2,v=1 x复合而成,ln(1 x)^2是由
g=lns,s=t^2,t=1 x复合而成,
所以y'=[(1 x)^2]'-[ln(1 x)^2]'
=2(1 x)(1 x)'-1/(1 x)^2*[(1 x)^2]'
=2(1 x)-2(1 x)/(1 x)^2
=2(1 x)-2/(1 x)
复合函数求导
复合函数的求导公式
复合函数求导,如果遇到分式,可用以下两种求导:
1.型如Z=f(x)/g(x),则Z对x求导,可用函数商的求导法则,即:Z'=[f'(x)g(x)一f(x)g'‘(x)]/g^2(x)。
2.对上式,还可转换为乘积形式来求,此时有:
Zg(x)=f(x),再两边求导得:
Z'g(x) Zg'(x)=f'(x)
即:
Z'=[f'(x)-Zg'(x)]/g(x)
最后代入Z即可。
记住基本公式即可
对于函数除法的求导
公式即[f(x)/g(x)]'
=[f'(x)*g(x)-f(x)*g'(x)]/g2(x)
如果还是记不住
就想成f(x) *1/g(x),再用乘法求导法则得到
f'(x) *1/g(x) f(x) *[1/g(x)]'
=f'(x) *1/g(x) -f(x)*g'(x)/g2(x)
=[f'(x)*g(x)-f(x)*g'(x)]/g2(x)
你是问复合函数求导时又有分数又有复合函数的时候怎么求导吧?这要看函数的结构的,如果分子分母都是复合函数,如y=sintanx/(1 e^2x)就要先用两个函数商的求导法则,其中求分子和分母的导数时又要用锁链法则,如果是复合函数的中间变量是分数,如y=sin(1 e^x/2x)要先用锁链法则,其中中间变量的导数要用商的求导法则
你的函数式子在哪里?
对于复合函数的求导
只要记住基本导数公式
还有求导的链式法则即可
即f[g(x)]的导数为f
'[g(x)]
*g'(x)
求导过程一步步进行
1.设u=g(x),对f(u)求导得:f'(x)=f'(u)*g'(x);2.设u=g(x),a=p(u),对f(a)求导得:f'(x)=f'(a)*p'(u)*g'(x);设函数y=f(u)的定义域为Du,值域为Mu,函数u=g(x)的定义域为D_。M_∩Du≠_,那么对于M_∩Du内的任意一个x经过u;有唯一确定的y值与之对应,则变量x与y之间通过变量u形成的一种函数关系,这种函数称为复合函数(compositefunction)。