初中三角函数值表,初中三角函数表及口诀
初中三角函数值表,初中三角函数表及口诀详细介绍
本文目录一览: 完整初中三角函数值表
(1)特殊角三角函数值 sin0=0 sin30=0.5 sin45=0.7071 二分之根号2 sin60=0.8660 二分之根号3 sin90=1 cos0=1 cos30=0.866025404 二分之根号3 cos45=0.707106781 二分之根号2 cos60=0.5 cos90=0 tan0=0 tan30=0.577350269 三分之根号3 tan45=1 tan60=1.732050808 根号3 tan90=无 cot0=无 cot30=1.732050808 根号3 cot45=1 cot60=0.577350269 三分之根号3 cot90=0 (2)0°~90°的任意角的三角函数值,查三角函数表。(见下) (3)锐角三角函数值的变化情况 (i)锐角三角函数值都是正值 (ii)当角度在0°~90°间变化时, 正弦值随着角度的增大(或减小)而增大(或减小) 余弦值随着角度的增大(或减小)而减小(或增大) 正切值随着角度的增大(或减小)而增大(或减小) 余切值随着角度的增大(或减小)而减小(或增大) (iii)当角度在0°≤α≤90°间变化时, 0≤sinα≤1, 1≥cosα≥0, 当角度在0°
<α
0, cotα>0. “锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。 附:三角函数值表 sin0=0,
sin15=(√6-√2)/4 ,
sin30=1/2,
sin45=√2/2,
sin60=√3/2,
sin75=(√6+√2)/2 ,
sin90=1,
sin105=√2/2*(√3/2+1/2)
sin120=√3/2
sin135=√2/2
sin150=1/2
sin165=(√6-√2)/4
sin180=0
sin270=-1
sin360=0
完整初中三角函数值表如下图所示:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
扩展资料:
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
“初中数学必背三角函数公式、三角函数值”主要包括正弦、余弦、正切函数的定义式和关系式。
(1)∠A的正弦值=∠A的对边:斜边,记作sinA=a/c。(2)∠A的余弦值=∠A的邻边:斜边,记作cosA=b/c。(3)∠A的正切值=∠A的对边:∠A的邻边,记作tanA=a/b。
sin30°=1/2 sin45°= √2/2 sin60°=√3/2cos30°=√3/2 cos 45°= √2/2 cos60°=1/2tan30°=√3/3 tan45°=1 tan60°==√3
完整初中三角函数值表如下图所示:
常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。
扩展资料:
起源
公元五世纪到十二世纪,印度数学家对三角学作出了较大的贡献。尽管当时三角学仍然还是天文学的一个计算工具,是一个附属品,但是三角学的内容却由于印度数学家的努力而大大的丰富了。
三角学中”正弦”和”余弦”的概念就是由印度数学家首先引进的,他们还造出了比托勒密更精确的正弦表。
我们已知道,托勒密和希帕克造出的弦表是圆的全弦表,它是把圆弧同弧所夹的弦对应起来的。印度数学家不同,他们把半弦(AC)与全弦所对弧的一半(AD)相对应,即将AC与∠AOC对应,这样,他们造出的就不再是”全弦表”,而是”正弦表”了。
印度人称连结弧(AB)的两端的弦(AB)为”吉瓦(jiba)”,是弓弦的意思;称AB的一半(AC) 为”阿尔哈吉瓦”。后来”吉瓦”这个词译成阿拉伯文时被误解为”弯曲”、”凹处”,阿拉伯语是 ”dschaib”。十二世纪,阿拉伯文被转译成拉丁文,这个字被意译成了”sinus”。
</α
初中三角函数表及口诀
熟记常见的三角函数值,对我们解三角函数题有很大的帮助,接下来给大家分享初中三角函数表及口诀,方便大家学习记忆。
初中的三角函数值 sin0=sin0°=0
cos0=cos0°=1
tan0=tan0°=0sin15=0.650;
sin15°=0.259
cos15=-0.759;cos15°=0.966
tan15=-0.855;tan15°=0.268
sin30°=1/2
cos30°=0.866;
tan30°=0.577;
sin45°=0.707;
cos45°=0.707
tan45=1.620;tan45°=1
sin60=-0.305;sin60°=0.866
cos60=-0.952;cos60°=1/2
tan60=0.320;tan60°=1.732
sin75=-0.388;sin75°=0.966
cos75=0.922;cos75°=0.259
tan75=-0.421;tan75°=sin75°/cos75°=3.732
sin90=0.894;sin90°=cos0°=1
cos90=-0.448;cos90°=sin0°=0
tan90=-1.995;tan90°不存在
sin105=-0.971;sin105°=cos15°
cos105=-0.241;cos105°=-sin15°
tan105=4.028;tan105°=-cot15°
sin120=0.581;sin120°=cos30°
cos120=0.814;cos120°=-sin30°
tan120=0.713;tan120°=-tan60°
sin135=0.088;sin135°=sin45°
cos135=-0.996;cos135°=-cos45°
tan135=-0.0887;tan135°=-tan45°
sin150=-0.7149;sin150°=sin30°
cos150=-0.699;cos150°=-cos30°
tan150=-1.022;tan150°=-tan30°
sin165=0.998;sin165°=sin15°
cos165=-0.066;cos165°=-cos15°
tan165=-15.041;tan165°=-tan15°
sin180=-0.801;sin180°=sin0°=0
cos180=-0.598;cos180°=-cos0°=-1
tan180=1.339;tan180°=0
sin195=0.219;sin195°=-sin15°
cos195=0.976;cos195°=-cos15°
tan195=0.225;tan195°=tan15°
sin360=0.959;sin360°=sin0°=0
cos360=-0.284;cos360°=cos0°=1
tan360=-3.380;tan360°=tan0°=0
特殊的三角函数值表
特殊三角函数记忆口诀 30°,45°,60°这三个角的正弦值和余弦值的共同点是:分母都是2,若把分子都加上根号,则被开方数就相应地变成了1,2,3.正切的特点是将分子全部都带上根号,令分母值为3,则相应的被开方数就是3,9,27。
一二三三二一,戴上根号对半劈。
两边根号三,中间竖旗杆。
分清是增减,试把分母安。
正首余末三,好记又简单。
零度九十度,斜线z形连。
端点均为零,余下竖横填。
初中三角函数表口诀
进入初中,三角函数的学习往往是孩子数学分数的最大杀手,下面我就整理了初中三角函数表速记口诀,供大家参考。
初中常见三角函数值表 α=0°(0):sinα=0;cosα=1;tαnα=0;cotα→∞;secα=1;cscα→∞。
α=15°(π/12):sinα=(√6-√2)/4;cosα=(√6+√2)/4;tαnα=2-√3;cotα=2+√3;secα=√6-√2;cscα=√6+√2。
α=22.5°(π/8):sinα=√(2-√2)/2;cosα=√(2+√2)/2;tαnα=√2-1;cotα=√2+1;secα=√(4-2√2);cscα=√(4+2√2)。
α=30°(π/6)sinα=1/2;cosα=√3/2;tαnα=√3/3;cotα=√3;secα=2√3/3;cscα=2。
α=45°(π/4):sinα=√2/2;cosα=√2/2;tαnα=1;cotα=1;secα=√2;cscα=√2。
α=60°(π/3)sinα=√3/2;cosα=1/2;tαnα=√3;cotα=√3/3;secα=2;cscα=2√3/3。
α=67.5°(3π/8):sinα=√(2+√2)/2;cosα=√(2-√2)/2;tαnα=√2+1;cotα=√2-1;secα=√(4+2√2);cscα=√(4-2√2)。
α=75°(5π/12):sinα=(√6+√2)/4;cosα=(√6-√2)/4;tαnα=2+√3;cotα=2-√3;secα=√6+√2;cscα=√6-√2。
α=90°(π/2):sinα=1;cosα=0;tαnα→∞;cotα=0;secα→∞;cscα=1。
α=180°(π):sinα=0;cosα=-1;tαnα=0;cotα→∞;secα=-1;cscα→∞。
α=270°(3π/2):sinα=-1;cosα=0;tαnα→∞;cotα=0;secα→∞;cscα=-1。
α=360°(2π):sinα=0;cosα=1;tαnα=0;cotα→∞;secα=1;cscα→∞。
初中数学三角函数公式 锐角三角函数公式
sinα=∠α的对边/斜边
cosα=∠α的邻边/斜边
tanα=∠α的对边/∠α的邻边
cotα=∠α的邻边/∠α的对边
倍角公式
Sin2A=2SinA.CosA
Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
tan2A=(2tanA)/(1-tanA^2)
(注:SinA^2是sinA的平方sin2(A))
三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α)
cos3α=4cosα·cos(π/3+α)cos(π/3-α)
tan3a=tana·tan(π/3+a)·tan(π/3-a)
三倍角公式推导
sin3a=sin(2a+a)=sin2acosa+cos2asina
辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中
sint=B/(A^2+B^2)^(1/2)
cost=A/(A^2+B^2)^(1/2)
tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
半角公式
tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);
cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.
sin^2(a/2)=(1-cos(a))/2
cos^2(a/2)=(1+cos(a))/2
tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))
三角和
sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ
cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ
tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)
两角和差
cos(α+β)=cosα·cosβ-sinα·sinβ
cos(α-β)=cosα·cosβ+sinα·sinβ
sin(α±β)=sinα·cosβ±cosα·sinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
和差化积
sinθ+sinφ=2sin[(θ+φ)/2]cos[(θ-φ)/2]
sinθ-sinφ=2cos[(θ+φ)/2]sin[(θ-φ)/2]
cosθ+cosφ=2cos[(θ+φ)/2]cos[(θ-φ)/2]
cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]
tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)
tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)
特殊角三角函数值记忆口诀 三十,四五,六十度,三角函数记牢固;
分母弦二切是三,分子要把根号添;
一二三来三二一,切值三九二十七;
递增正切和正弦,余弦函数要递减.
九年级数学三角函数公式表
关于九年级数学三角函数公式表如下:
锐角三角函数:锐角三角函数定义:锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
正弦(sin):对边比斜边,即sinA=a/c;余弦(cos):邻边比斜边,即cosA=b/c;正切(tan):对边比邻边,即tanA=a/b;余切(cot):邻边比对边,即cotA=b/a;正割(sec):斜边比邻边,即secA=c/b;余割(csc):斜边比对边,即cscA=c/a。
三角函数记忆口诀:三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割;中心记上数字1, 连结顶点三角形;向下三角平方和,倒数关系是对角,顶点任意一函数,等于后面两根除。
诱导公式就是好,负化正后大化小,变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变,将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
初中的三角函数表
1、特殊角三角函数值:sin0=0、sin30=0.5、sin45=0.7071二分之根号2、sin60=0.8660二分之根号3、sin90=1,cos0=1、cos30=0.866025404二分之根号3、cos45=0.707106781二分之根号2、cos60=0.5、cos90=0,tan0=0、tan30=0.577350269三分之根号3、tan45=1、tan60=1.732050808根号3、tan90=无,cot0=无、cot30=1.732050808根号3、cot45=1、cot60=0.577350269三分之根号3、cot90=0。2、0°~90°的任意角的三角函数值,查三角函数表。3、锐角三角函数值的变化情况:锐角三角函数值都是正值,当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大),当角度在0°≤α≤90°间变化时,0≤sinα≤1,1≥cosα≥0,当角度在0°0。
初中数学三角函数表
三角函数是初中数学中重要的知识点,下面我整理了初中数学三角函数表,希望对数学学习有所帮助。
数学特殊三角函数值
初中数学三角函数的应用 三角函数在复数中有较为重要的应用。在物理学中,三角函数也是常用的工具。
有六种基本函数:函数名:正弦、余弦、正切、余切、正割、余割;
符号:sin、cos、tan、cot、sec、csc。
正弦函数sin(A)=a/c
余弦函数cos(A)=b/c
正切函数tan(A)=a/b
余切函数cot(A)=b/a
其中a为对边,b为邻边,c为斜边。
三角函数公式表 积化和差公式
sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)]
cosα·sinβ=(1/2)*[sin(α+β)-sin(α-β)]
cosα·cosβ=(1/2)*[cos(α+β)+cos(α-β)]
sinα·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]
和差化积公式
sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
三倍角公式
sin3α=3sinα-4sin^3α;
cos3α=4cos^3α-3cosα
两角和与差的三角函数关系
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)
正弦二倍角公式
sin2α=2cosαsinα
推导:sin2A=sin(A+A)=sinAcosA+cosAsinA=2sinAcosA
拓展公式:sin2A=2sinAcosA=2tanAcos2A=2tanA/[1+tan2A]
1+sin2A=(sinA+cosA)^2
余弦二倍角公式
余弦二倍角公式有三组表示形式,三组形式等价:
1.Cos2a=Cos2a-Sin2a=[1-tan2a]/[1+tan2a]
2.Cos2a=1-2Sin2a
3.Cos2a=2Cos2a-1
推导:cos2A=cos(A+A)=cosAcosA-sinAsinA=cos^2A-sin^2A=2cos^2A-1
=1-2sin^2A
正切二倍角公式
tan2α=2tanα/[1-tan2α]
推导:tan2A=tan(A+A)=(tanA+tanA)/(1-tanAtanA)=2tanA/[1-tan2A]
降幂公式
cosA^2=[1+cos2A]/2
sinA^2=[1-cos2A]/2
tanA^2=[1-cos2A]/[1+cos2A]
变式:sin2α=sin^2(α+π/4)-cos^2(α+π/4)=2sin^2(a+π/4)-1=1-2cos^2(α+π/4);cos2α=2sin(α+π/4)cos(α+π/4)
余弦定理:
a^2=b^2+c^2-2bc*cosA
b^2=c^2+a^2-2ca*cosB
c^2=a^2+b^2-2ab*cosC
初中数学常用三角函数公式表
初中数学常用三角函数公式表如下:
一、锐角三角函数公式:
sinα=∠α的对边/斜边;cosα=∠α的邻边/斜边;tanα=∠α的对边/∠α的邻边;cotα=∠α的邻边/∠α的对边
二、倍角公式
Sin2A=2SinACosA;Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1;tan2A=(2tanA)/(1-tanA^2)(注:SinA^2是sinA的平方sin2(A))
三、三倍角公式
sin3α=4sinα·sin(π/3+α)sin(π/3-α);cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a=tana·tan(π/3+a)·tan(π/3-a)
四、三倍角公式推导
sin3a=sin(2a+a)=sin2acosa+cos2asina
四、辅助角公式
Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中:
sint=B/(A^2+B^2)^(1/2);cost=A/(A^2+B^2)^(1/2);tant=B/A
Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B
五、降幂公式
sin^2(α)=(1-cos(2α))/2=versin(2α)/2
cos^2(α)=(1+cos(2α))/2=covers(2α)/2
tan^2(α)=(1-cos(2α))/(1+cos(2α))
三角函数古希腊历史:
早期对于三角函数的研究可以追溯到古代。古希腊三角术的奠基人是公元前2世纪的喜帕恰斯。他按照古巴比伦人的做法,将圆周分为360等份(即圆周的弧度为360度,与现代的弧度制不同)。
对于给定的弧度,他给出了对应的弦的长度数值,这个记法和现代的正弦函数是等价的。喜帕恰斯实际上给出了最早的三角函数数值表。然而古希腊的三角学基本是球面三角学。这与古希腊人研究的主体是天文学有关。
到了公元14世纪,阿拉伯人将三角计算重新以算术方式代数化(古希腊人采用的是建立在几何上的推导方式)的努力为后来三角学从天文学中独立出来,成为了有更广泛应用的学科奠定了基础。
初中常用三角函数值有哪些
初中常用的三角函数值包括30°,45°,60°,90°,180°等等,这些都是三角函数的特殊角,接下来看一下相关的具体内容。
常用三角函数值
三角函数值的特点 (1)当角度在0°~90°间变化时,
正弦值随着角度的增大(或减小)而增大(或减小)。
余弦值随着角度的增大(或减小)而减小(或增大)。
正切值随着角度的增大(或减小)而增大(或减小)。
余切值随着角度的增大(或减小)而减小(或增大)。
(2)当角度在0°≤α≤90°间变化时,
0≤sinα≤1,1≥cosα≥0。
三角函数值 正弦函数sin(A)=a/c
余弦函数cos(A)=b/c
正切函数tan(A)=a/b
余切函数cot(A)=b/a
其中a为对边,b为邻边,c为斜边。
初中三角函数表和记法
相信在初中的数学学习中,三角函数会有一些困难,我为您整理了关于三角函数表的一些知识,快来看看吧。
特殊角三角函数表 sin0=0,sin30=0.5,sin45=0.7071=二分之根号2,sin60=0.8660=二分之根号3,sin90=1。
cos0=1,cos30=0.866025404=二分之根号3,cos45=0.707106781=二分之根号2,cos60=0.5,cos90=0。
tan0=0,tan30=0.577350269=三分之根号3,tan45=1,tan60=1.732050808=根号3,tan90=无。
cot0=无,cot30=1.732050808=根号3,cot45=1,cot60=0.577350269=三分之根号3,cot90=0。
记三角函数方法 正弦、余弦的30°、45°、60°值的分母都是2,而分子,正弦为根号1(=1)、根号2、根号3。余弦为根号3、根号2、根号1(=1),正切、余切的30°、45°、60°值的分母都是3,分子则为(根号3)的1次幂、(根号3)的2次幂、(根号3)的3次幂余切则相反。必须告诉大家0°,90°也是特殊角,且sin0°=0,cos0°=1,tg0°=0,ctg0°不存在;sin90°=1,cos90°=1,tg90°不存在,ctg90°=0。因此,今后我们指的特殊角是0°、30°、45°、60°、90°。
三角函数公式 sin(π+α)=-sinα
cos(π+α)=-cosα
tan(π+α)=tanα
cot(π+α)=cotα
sec(π+α)=-secα
csc(π+α)=-cscα
以上是我整理的三角函数知识点,希望给大家带来帮助。