百度
360搜索
搜狗搜索

二进制原码反码补码转换器,用二进制转16进制写出+85的原码、反码、补码?详细介绍

本文目录一览: 反码补码原码怎么转换

反码补码原码转换方法:
工具:戴尔K550、Win11、设置。
1、首先要知道,换算规则:原码转换为反码:符号位不变,数值位分别“按位取反”。
2、接着反码转换为原码也是一样,但规则却有不同之处:符号位不变,数值位分别“按位取反”。
3、然后就是,原码转换为补码的规则:符号位不变,数值位按位取反,末位再加1。
4、最后补码转换为原码:符号位不变,数值位按位取反,末位再加1,即补码的补码等于原码。
5、而求补(变补)的换算规则与之前有所差别:符号位和数值位都取反,末位再加1。

补码原码反码怎么转换

对于一个数, 计算机要使用一定的编码方式进行存储. 原码, 反码, 补码是机器存储一个具体数字的编码方式.
1. 原码
原码就是符号位加上真值的绝对值, 即用第一位表示符号, 其余位表示值. 比如如果是8位二进制:
[+1]原 = 0000 0001
[-1]原 = 1000 0001
第一位是符号位. 因为第一位是符号位, 所以8位二进制数的取值范围就是:
[1111 1111 , 0111 1111]

[-127 , 127]
原码是人脑最容易理解和计算的表示方式.
2. 反码
反码的表示方法是:
正数的反码是其本身
负数的反码是在其原码的基础上, 符号位不变,其余各个位取反.
[+1] = [00000001]原 = [00000001]反
[-1] = [10000001]原 = [11111110]反
可见如果一个反码表示的是负数, 人脑无法直观的看出来它的数值. 通常要将其转换成原码再计算.
3. 补码
补码的表示方法是:
正数的补码就是其本身
负数的补码是在其原码的基础上, 符号位不变, 其余各位取反, 最后+1. (即在反码的基础上+1)
[+1] = [00000001]原 = [00000001]反 = [00000001]补
[-1] = [10000001]原 = [11111110]反 = [11111111]补
在计算机系统中,数值,一律采用补码来表示和存放。
原码和反码的编码方式,都是不合理的。
  一个零,它们都编造了两个代码:-0、+0。
所以,在计算机中,原码和反码,都是不存在的。
  所谓的“取反加一”,是无法实现的。
真值和补码,可以直接互相转换。
它们的对应关系如下:
只要记住:【补码的首位是负数】这个特点,即可。

原码、补码、反码之间是怎样转换的?

计算机系统中,并没有原码和反码。
不存在的东西,哪有什么可转换的呢?
在计算机中,使用的是二进制。
八个二进制位,称为一个字节。
计数范围是:0000 0000~1111 1111。
对应十进制:0 ~ 255,共有 256 个数字。
计数周期是:2^8 = 256。
在计算机中,并没有负数。
所以,计算机中这些数字,都属于自然数,即“零和正数”。
但是,实际上,正数,也能当负数用的。
你看 2 位 10 进制数的计算:
   25 - 1 = 24
   25 + 99 = (一百) 24
如果,你不舍弃进位,结果就 124,+99 还是 99。
如果,你舍弃了超出 2 位数的进位,+99 就相当于-1 。
这时的正数,就称为“负数的补数”。
算法是:补数=负数+周期 (10^n),n 是补数的位数。
-------------------------
同理,在计算机中,255 = 1111 1111,就相当于-1。
示例: 0000 0001 = 1
  + 1111 1111 = 255
--------------
  (1) 0000 0000 = 0
如果舍弃了进位 1,这算式,就是:+1 -1 = 0。
如果保留进位,这就是: 1 + 255 = 256。
-------------------------
那么,254 = 1111 1110,就相当于-2。
   。。。
只要你舍弃进位,这些正数,就可以代表负数,参加运算。
这些正数,就称为:负数的补码。
  补码 = 负数 + 周期(2^n),n 是补码的位数。
-------------------------
利用补码,可以把减法,转换成加法运算。
从而,就能简化计算机的硬件。
原码和反码,都没有这种功能。
所以,在计算机中,并没有原码和反码。
符号位原码反码取反加一,这些,都是“鸡肋”。
学习这堆垃圾,花费时间不少,还是弄不懂“补码的意义”。
老外数学不好,也就只能整这些骚操作了。
一、正整数的原码、反码、补码完全一样,即符号位固定为0,数值位相同。
二、负整数的符号位固定为1,由原码变为补码时,规则如下:
1、原码符号位1不变,整数的每一位二进制数位求反,得到反码。
2、反码符号位1不变,反码数值位最低位加1,得到补码。
方法:
(1)正整数的原码,反码和补码计算。【符号位为0,原码=反码=补码】
(2)负整数的原码,反码和补码计算,先求原码,再求反码,最后求补码。
(3)根据补码求真值,一般使用图中的公式计算,正整数符号为+,负整数符号为-,通常完成补码求真后,可以按步骤1、2简单的逆推一下,看结果是否正确。
扩展资料:补码的表示方法:
模的概念:把一个计量单位称之为模或模数。例如,时钟是以12 进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。
从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的。
因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为 补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位 二进制数,它的模数为2^8=256。在计算中,两个互补的数称为“补码”。

用二进制转16进制写出+85的原码、反码、补码?

将十进制数+85转化为二进制的原码、反码和补码,过程如下:原码:1. +85的十进制表示为01010101
2. 将每个位上的数字乘以2的权,得:128+32+16+8+1=185
3. 所以+85的原码二进制为:01010101反码:1. 原码全为0的按原码,不为0的按位取反
2. 01010101 原码
3. 10101010 反码(除第一个1外,其他位取反)补码:1. 反码+1
2. 10101010 反码
3. 10101011 补码(反码+1)所以,+85的二进制表示为:原码: 01010101
反码: 10101010
补码: 10101011再将这三个二进制数转化为16进制:原码: 01010101 -> 55
反码: 10101010 -> AA
补码: 10101011 -> AB综上,+85的16进制表示为:原码: 55
反码: AA
补码: AB16进制中的A表示10,B表示11。所以55表示的十进制为85,AA表示的十进制为170,AB表示的十进制为171。
补码AB与原码55的含义相同,都是代表正数+85。希望以上详细的计算过程能帮助您理解二进制数的原码、反码和补码,以及如何将二进制数转化为16进制数。

计算机的原码,反码,补码是怎么回事?可以举例说明吗?

原码、反码和补码是计算机中对数字二进制的三种表示方法。
1、原码
原码(trueform)是一种计算机中对数字的二进制定点表示方法。原码表示法在数值前面增加了一位符号位(即最高位为符号位):正数该位为0,负数该位为1(0有两种表示:+0和-0),其余位表示数值的大小。
例如:用8位二进制表示一个数,+11的原码为00001011,-11的原码就是10001011。
2、反码
反码是数值存储的一种,多应用于系统环境设置,如linux平台的目录和文件的默认权限的设置umask,就是使用反码原理。反码的表示方法是:正数的反码与其原码相同;负数的反码是对正数逐位取反,符号位保持为1。
例如:
[+7]反=00000111B;
[-7]反=11111000B。
3、补码
正数:正数的补码和原码相同。负数:负数的补码则是符号位为“1”。并且,这个“1”既是符号位,也是数值位。数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。
例如:
[+7]补=00000111B;
[-7]补=11111001B。
扩展资料
原码、反码、补码的转换方法如下:
(1)已知原码,求补码。
例:已知某数X的原码为10110100B,试求X的补码和反码。
首先通过原码的首位确定该数字的正负,若为正数,反码与原码相同,补码比原码在末尾加1;若为负数,求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。
(2)已知补码,求原码。
按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1的方法。
参考资料来源:百度百科-反码
参考资料来源:百度百科-补码
参考资料来源:百度百科-原码

小数的补码,原码,反码怎么相互转换?(二进制)

你把小数变换成二进制,并补齐八位。
然后,正数的原码反码补码,都和原数相同。
如: 7/16 = 0.011 1000B,
其原码反码补码,就都是:0011 1000。
 
而: -7/16 =-0.011 1000B,
其补码,就是:1100 1000。
 
别忘了采纳。
化为2进制是整数部分除以二知道变为1
小数部分乘以2直到变为1
,符号位0表示正1表示负
正数:原码=补码
负数:
原码
=
正数部分(去掉负号)的二进制值,且符号位(最左边的比特位)为1
反码
=
正数部分(去掉负号)的二进制值,按位取反
补码
=
反码
+
1
小数点依旧用点
定点数
所谓定点数是指小数点位置固定不变的数。在计算机中,通常用定点数来表示整数与纯小数,分别称为定点整数与定点小数。
定点整数:一个数的最高二进制位是数符位,用以表示数的符号;而小数点的位置默认为在最低(即最右边)的二进制位的后面,但小数点不单独占一个二进制位,如下所示:
0
1001010010001010001
数符位
数值位
小数位
因此,在一个定点整数中,数符位右边的所有二进制位数表示的是一个整数值。
定点小数:一个数的最高二进制位是数符位,用来表示数的符号;而小数点的位置默认为在数符位后面,不单独占一个二进制位,如图所示:
0
1001010010001010001
数符位|小数位
数值位
因此,在一个定点小数中,数符位右边的所有二进制位数表示的是一个纯小数。
2.浮点数
在计算机中,定点数通常只用于表示整数或纯小数。而对于既有整数部分又有小数部分的数,由于其小数点的位置不固定,一般用浮点数表示。
在计算机中所说的浮点数就是指小数点位置不固定的数。一般地,一个既有整数部分又有小数部分的十进制数d可以表示成如下形式:
d=r*10n
其中r为一个纯小数,n为一个整数。
如一个十进制数123.456可以表示成:0.123456*103,十进制小数0.00123456可以表示成0.123456*10-2。纯小数r的小数点后第一位一般为非零数字。
同样,对于既有整数部分又有小数部分的二进制数口也可以表示成如下形式:
d=r*2n
其中r为一个二进制定点小数,称为d的尾数;n为一个二进制定点整数,称为d的阶码,它反映了二进制数d的小数点的实际位置。为了使有限的二进制位数能表示出最多的数字位数,定点小数r的小数点后的第一位(即符号位的后面一位)一般为非零数字(即为“1”)。
在计算机中,通常用一串连续的二进制位来存放二进制浮点数,它的一般结构如图所示:
阶符
n
数符
r
|
阶码部分
|
小数位
尾数部分

阅读更多 >>>  正数的补码,正数的补码

C语言编程之二进制原码、反码和补码

概述

  在计算机内,有符号数有3种表示法:原码、反码和补码。

在计算机中,数据是以补码的形式存储的,所以补码在c语言的教学中有比较重要的地位,而讲解补码必须涉及到原码、反码。

详细释义

所谓原码就是二进制定点表示法,即最高位为符号位,“0”表示正,“1”表示负,其余位表示数值的大小。

反码表示法规定:正数的反码与其原码相同;负数的反码是对其原码逐位取反,但符号位除外。

补码表示法规定:正数的补码与其原码相同;负数的补码是在其反码的末位加1。

原码、反码和补码的表示方法

定点整数表示法

定点小数小时法

反码

正数:正数的反码与原码相同。

负数:负数的反码,符号位为“1”,数值部分按位取反。

例如: 符号位 数值位

[+7]反= 0 0000111 B

[-7]反= 1 1111000 B

注意:

a. 数0的反码也有两种形式,即

[+0]反=00000000B

[- 0]反=11111111B

b. 8位二进制反码的表示范围:-127~+127

原码

在数值前直接加一符号位的表示法。

例如: 符号位 数值位

[+7]原= 0 0000111 B

[-7]原= 1 0000111 B

注意:

数0的原码有两种形式:

[+0]原= 00000000B

[-0]原= 10000000B

位二进制原码的表示范围:-127~+127

补码

1)模的概念:把一个计量单位称之为模或模数。

例如,时钟是以12进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。

对于一个模数为12的循环系统来说,加2和减10的效果是一样的;因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。

10和2对模12而言互为补数。

同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位二进制数,它的模数为2^8=256。在计算中,两个互补的数称为“补码”。

2)补码的表示:

正数:正数的补码和原码相同。

负数:负数的补码则是符号位为“1”。并且,这个“1”既是符号位,也是数值位。数值部分按位取反后再在末位(最低位)加1。也就是“反码+1”。

例如: 符号位 数值位

[+7]补= 0 0000111 B

[-7]补= 1 1111001 B

补码在微型机中是一种重要的编码形式,请注意:

a. 采用补码后,可以方便地将减法运算转化成加法运算,运算过程得到简化。

正数的补码即是它所表示的数的真值,而负数的补码的数值部份却不是它所表示的数的真值。

采用补码进行运算,所得结果仍为补码。

b. 与原码、反码不同,数值0的补码只有一个,即

[0]补=00000000B。

若字长为8位,则补码所表示的范围为-128~+127;进行补码运算时,应注意所得结果不应超过补码所能表示数的范围。

原码、反码和补码之间的转换

由于正数的原码、补码、反码表示方法均相同,不需转换。

在此,仅以负数情况分析。

(1) 已知原码,求补码。

例:已知某数X的原码为10110100B,试求X的补码和反码

解:由[X]原=10110100B知,X为负数。求其反码时,符号位不变,数值部分按位求反;求其补码时,再在其反码的末位加1。

1 0 1 1 0 1 0 0 原码

1 1 0 0 1 0 1 1 反码,符号位不变,数值位取反

1 1 0 0 1 1 0 0 补码,符号位不变,数值位取反+1

故:[X]补=11001100B,[X]反=11001011B。

(2) 已知补码,求原码。

分析:按照求负数补码的逆过程,数值部分应是最低位减1,然后取反。但是对二进制数来说,先减1后取反和先取反后加1得到的结果是一样的,故仍可采用取反加1 有方法。

例:已知某数X的补码11101110B,试求其原码。

解:由[X]补=11101110B知,X为负数。

1 1 1 0 1 1 1 0 补码

1 1 1 0 1 1 0 1 反码(符号位不变,数值位取反加1)

1 0 0 1 0 0 1 0 原码(符号位不变,数值位取反)

关于补码的补充例子:

一个正的整数的补码就是这个整数变成二进制的值。

举例:一个int型变量i=10,其二进制补码就是0000 0000 0000 0000 0000 0000 0000 1010(0x0000000A)

2. 一个负整数的二进制补码,就是该负数的绝对值所对应的补码全部取反后加1.

举例:int i=-10的补码如何求得:

先求-10的绝对值10的补码是0000 0000 0000 0000 0000 0000 0000 1010(0x0000000A);

再将求得的补码取反: 1111 1111 1111 1111 1111 1111 1111 0101

再将取反后得到的补码加1: 1111 1111 1111 1111 1111 1111 1111 0101 + 1

即可得到-10的二进制补码: 1111 1111 1111 1111 1111 1111 1111 0110(0xFFFFFFF6)

3. +0和-0的二进制补码都是0

首先+0的二进制补码是0;

-0的二进制补码是+0的二进制补码取反后加1,+0的二进制补码为0,取反后为FFFFFFFF,加1后还是0

原码和反码在数值0都有二意,唯有补码在数值0是唯一的码值!

原码 反码 补码怎么转换

十进制每位基数是:个位1,高位=低位*10,因此观察2018这个数和基数的关系:
1000 100 10 1 2 0 1 8 这个数包含2个1000,0个100,1个10和8个1387D=?B,二进制计数实际上仅比十进制使用的基数不同而已
写出二进制每位基数:个位1,高位=低位*2,从个位开始写,写到比387大为止
512 256 128 64 32 16 8 4 2 1 用这组数从高到低顺序将387凑出来,用到的数下面写1,否则0 0 1 1 0 0 0 0 0 1 1 387包含1个256,1个128,1个2和1个1因此,387D=110000011B
其他n进制也这么转换,使用n进制基数:个位1,高位=低位*n
十进制的各个位,称为:... 万、千、百、十、个。1/10、1/100 ...。
  19,就称为:1*十、9*个。
二进制的各个位,称为:... 16、八、四、二、个。1/2、1/4 ...。
  10011,就称为:1*16、0*八、0*四、1*二、1*个。
把十进制 387,转换为二进制,就是:110000011。
你做的步骤方法,也算正确。
但是,这只是【数制转换】而已,和原码反码补码,毫无关系。
反码补码原码怎么转换,来看看方法吧。
1、首先原始代码的最高位是符号位,0表示正,1表示负,中间值表示数字的绝对值。
2、符号的反转,正数符号的反转与原符号相同,负数的补数是该符号的最低有效位数加上1。
3、补数,正数的补数与原代码相同,负数的补数在其倒数第一的基础上加1。零分为+0和-0。 进行不同符号的加法或同一符号的减法时,不能直接进行加法或减法,不能直接给出正负的结果。
4、必须先取绝对值,然后再加上减法。 符号比特由较大的绝对值决定,因此出现了转码。 反码是对原始代码的改进。补码在针对加减运算和正负零的问题上都解决了,平时用的最多的也就是补码。

原码、补码、反码之间是怎样转换的?

一、正整数的原码、反码、补码完全一样,即符号位固定为0,数值位相同。
二、负整数的符号位固定为1,由原码变为补码时,规则如下:
1、原码符号位1不变,整数的每一位二进制数位求反,得到反码。
2、反码符号位1不变,反码数值位最低位加1,得到补码。
方法:
(1)正整数的原码,反码和补码计算。【符号位为0,原码=反码=补码】
(2)负整数的原码,反码和补码计算,先求原码,再求反码,最后求补码。
(3)根据补码求真值,一般使用图中的公式计算,正整数符号为+,负整数符号为-,通常完成补码求真后,可以按步骤1、2简单的逆推一下,看结果是否正确。
扩展资料:补码的表示方法:
模的概念:把一个计量单位称之为模或模数。例如,时钟是以12 进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。
从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的。
因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为 补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位 二进制数,它的模数为2^8=256。在计算中,两个互补的数称为“补码”。
一、正整数的原码、反码、补码完全一样,即符号位固定为0,数值位相同。
二、负整数的符号位固定为1,由原码变为补码时,规则如下:
1、原码符号位1不变,整数的每一位二进制数位求反,得到反码。
2、反码符号位1不变,反码数值位最低位加1,得到补码。
方法:
(1)正整数的原码,反码和补码计算,【符号位为0,原码反码补码】。
(2)负整数的原码,反码和补码计算,先求原码,再求反码,最后求补码。
(3)根据补码求真值,一般使用图中的公式计算,正整数符号为+,负整数符号为-,通常完成补码求真后,可以按步骤1、2简单的逆推一下,看结果是否正确。
补码的表示方法:
模的概念:把一个计量单位称之为模或模数。例如,时钟是以12 进制进行计数循环的,即以12为模。在时钟上,时针加上(正拨)12的整数位或减去(反拨)12的整数位,时针的位置不变。14点钟在舍去模12后,成为(下午)2点钟(14=14-12=2)。
从0点出发逆时针拨10格即减去10小时,也可看成从0点出发顺时针拨2格(加上2小时),即2点(0-10=-10=-10+12=2)。因此,在模12的前提下,-10可映射为+2。由此可见,对于一个模数为12的循环系统来说,加2和减10的效果是一样的。
因此,在以12为模的系统中,凡是减10的运算都可以用加2来代替,这就把减法问题转化成加法问题了(注:计算机的硬件结构中只有加法器,所以大部分的运算都必须最终转换为加法)。10和2对模12而言互为 补数。
同理,计算机的运算部件与寄存器都有一定字长的限制(假设字长为8),因此它的运算也是一种模运算。当计数器计满8位也就是256个数后会产生溢出,又从头开始计数。产生溢出的量就是计数器的模,显然,8位 二进制数,它的模数为2^8=256。在计算中,两个互补的数称为“补码”。
直接转换,即可。
比如,12,
其原码、补码、反码,都相等,都是 12。
 
正数的补码,是其本身。
负数的补码,就用它的正数,减一取反,即可得到补码。
 
原码、反码,根本就没有用。
所以,在计算机中,也没有原码和反码。
那么,我们也不必关心这些。
在计算机系统中,数值,一律使用补码来表示和存储。
原码和反码,在计算机中,都不存在。
正负数值,和补码的转换关系,可见下图:
数值和补码,可以直接转换,并不需要借助原码和反码。
学习原码反码,这就走错道了。
即使学完了原码反码取反加一,也不能理解补码的意义。
原码、反码、补码和移码是机器存储一个具体数字的编码方式,具体转换方法请参考视频教程:
原码反码补码移码概念和转换方法
正数的原码、反码、补码是一致的。(例如:2的原码:0000 0010,那么其反码和补码都是0000 0010)
负数的反码顾名思义,是除了符号位与原码一致,其余位都与原码相反。(例如:-2的原码是1000 0010,那么其反码是1111 1101),负数的补码则是在其反码的基础上加1。(例如:-2的反码是1111 1110)
1、首先,数字除了我们平时最长使用的十进制数外,还有二进制,八进制,十六进制等。这里我们的原码,补码,反码之间转换指的是二进制数。如下。
2、在二进制数中,数字的正负是根据首位是0还是1来判断的,如果首位是0,那么就是正数,首位是1就代表负数。如下图。
3、从原码到反码,如果该数为正数,也保持不变,如果首位是1,也就是说是负数,就将除了首位的1除外的所有数字取反。如下图所示。点击即可查看。
4、如果想要把原码转换成补码,对正数来说,补码与原码相同,对负数来说,之间将反码加1就可以得到补码,计算示例如下图所示。当然,我们还可以将补码转换为原码。如果是负数得到的补码,可以通过求该补码的补码来得到原来的原码。如下。

网站数据信息

"二进制原码反码补码转换器,用二进制转16进制写出+85的原码、反码、补码?"浏览人数已经达到20次,如你需要查询该站的相关权重信息,可以点击进入"Chinaz数据" 查询。更多网站价值评估因素如:二进制原码反码补码转换器,用二进制转16进制写出+85的原码、反码、补码?的访问速度、搜索引擎收录以及索引量、用户体验等。 要评估一个站的价值,最主要还是需要根据您自身的需求,如网站IP、PV、跳出率等!